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Abstract

Urolithin A (uroA) is a polyphenol derived from the multi-step metabolism of dietary ellagitannins
by the human gut microbiota that can affect host health by stimulating mitophagy. Most
individuals harbor a microbiota capable of uroA production; however, the mechanisms
underlying the dehydroxylation of its catechol-containing dietary precursor (uroC) are unknown.
Here, we use a combination of untargeted bacterial transcriptomics, proteomics, and
comparative genomics to uncover an inducible uroC dehydroxylase (ucd) operon in
Enterocloster spp. We show that Enterocloster spp. are sensitive to iron chelation by uroC, and
dehydroxylation to uroA rescues growth by disrupting the iron-binding catechol. Importantly,
only microbiota samples actively transcribing ucd could produce uroA, establishing ucd-
containing Enterocloster spp. as keystone urolithin metabolizers. Overall, this work identifies
Enterocloster spp. and the ucd operon as main contributors to uroA production and establishes
a multi-omics framework to further our mechanistic understanding of polyphenol metabolism by

the human gut microbiota.
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Main

The human gut microbiota is a collection of trillions of microorganisms that colonize the
gastrointestinal tract and play pivotal roles in host health and disease '. Gut bacteria help
maintain homeostasis by regulating host immune cell activity, gut barrier integrity, and nutrient
availability 2. One of the main mediators of microbiota-host interactions are microbial
metabolites. Gut bacteria possess an immense metabolic repertoire (nearly 1000-fold more
protein coding sequences than the human genome 3) to perform four main classes of reactions:
hydrolysis, conjugation, cleavage, and reduction 7. These ubiquitous reactions have been
linked to microbiota-dependent metabolism of therapeutic drugs 819, host bile acids &'"12, and

diet-derived compounds 315,

Diet is a strong modulator of the composition and function of the gut microbiota '6'°. Diet-
derived polyphenols are a diverse class of plant secondary metabolites found in fruits,
vegetables, and nuts (reviewed in 2°) that are poorly absorbed by the host and reach the large
intestine relatively intact 72!, Ellagitannins are a large sub-group of polyphenols that belong to
the family of hydrolysable tannins and are characterized by a central glucose (open-chain or
pyranose forms) linked to diverse pyrogallol-like moieties 2°. Camu camu, a berry rich in the
ellagitannin castalagin, has been shown to impact anti-cancer immunity via the gut microbiome,
and is currently in clinical trials (NCT05303493, NCT06049576) in combination with immune
checkpoint inhibitors 2223, Depending on microbiota composition, ellagitannins can be
hydrolyzed and reduced by gut bacteria into bioactive metabolites (ellagic acid, urolithins,
nasutins) according to different metabolic phenotypes characterized by the terminal metabolites

observed in biological fluids 2* (Supplementary Fig. 1).
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Urolithin A (uroA) is the most common terminal metabolite of ellagitannin metabolism and has
reported pharmacological activities both within the gut environment and systemically following
absorption 2%, In the gut, uroA can attenuate colitis by increasing the expression of epithelial
tight junction proteins 26-28 vja the activation of aryl hydrocarbon receptor (AhR)-Nrf2 pathways
29,30 Additionally, uroA can enhance immunotherapy in colorectal cancer models by activating
Pink1-dependent mitophagy pathways in T cells, improving anti-tumor CD8+ T cell immunity 3'.
Clinical trials in healthy individuals have demonstrated that uroA is safe, bioavailable, and can
be detected in its aglycone, glucuronidated, and sulfated forms in plasma 2527, Once absorbed
by the host, uroA can trigger mitophagy in muscle cells, improving muscle function in animal
models of ageing and Duchenne muscular dystrophy 26:293233 Qverall, uroA can enhance gut
barrier integrity, modulate the immune system, and promote mitochondrial health in the host,

thus showing promise as a postbiotic to treat age-related conditions 34-36.

While urolithin metabolism is prevalent in human populations, few gut bacteria have been
reported to metabolize urolithins 343, Most known urolithin metabolizers belong to the
Eggerthellaceae family (Gordonibacter urolithinfaciens, Gordonibacter pamelaeae, Ellagibacter
isourolithinifaciens) and can perform multiple metabolic steps in the urolithin metabolism
pathway, yielding either urolithin C (uroC) or isourolithin A (isouroA) from ellagic acid ¥.
Recently, certain members of the Enterocloster spp. (Lachnospiraceae family) were reported
to dehydroxylate uroC to uroA and isouroA to urolithin B (uroB) both in vitro and in vivo 383°.
These findings shed light on the minimal bacterial community required for the complete
metabolism of ellagic acid to uroA; however, the genes and enzymes responsible for these

dehydroxylation reactions remain unknown (Fig. 1A).

Here, we use a multi-omics enzyme identification framework to uncover uroC dehydroxylase

(ucd) genes and enzymes in Enterocloster spp. and their relative, Lachnoclostridium pacaense.
4
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We find that the UcdCFO enzyme complex specifically dehydroxylates 9-hydroxy urolithins and
that both metabolizing species and ucd genes are prevalent and actively transcribed in human
feces during ex vivo metabolism. We further demonstrate that Enterocloster spp. growth is
delayed by uroC and that dehydroxylation may be a mechanism to inactivate its iron-binding
catechol moiety. Our study sheds light on the genetic and chemical basis underlying the

complex reciprocal interactions between urolithins and the gut microbiota.
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Results

A subset of Enterocloster species converts urolithin C to urolithin A in vitro.

Members of the Enterocloster spp. have previously been shown to dehydroxylate uroC
in vitro 38 and in vivo 3° under anaerobic conditions (Fig. 1A, full metabolic pathway in
Supplementary Fig. 1). To determine the prevalence of uroC metabolism within this genus, we
incubated all available Enterocloster spp. type strains (Methods) with uroC and quantified
urolithin concentrations by liquid chromatography-mass spectrometry (LC-MS). Of the tested
bacteria, only E. asparagiformis , E. bolteae , and E. citroniae dehydroxylated uroC to produce
uroA (Fig. 1B). Interestingly, uroC metabolism was not predicted by phylogeny, as uroC-
metabolizing species did not cluster based on 16S rRNA genes, genomes, or proteomes (Fig.
1C, Supplementary Fig. 2A,B, respectively), suggesting gain or loss of metabolic gene clusters
throughout the evolution of Enterocloster spp. Based on these results, we chose to perform
more in-depth analysis on E. asparagiformis and E. bolteae to identify the metabolic gene

clusters involved in uroC dehydroxylation.
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Figure 1. Urolithin C metabolism by Enterocloster spp. is not predicted by phylogeny.
A) Reaction scheme of uroC dehydroxylation by gut resident Enterocloster spp. via unknown
enzymes. B) LC-MS screen of Enterocloster spp. type strains for dehydroxylation activity. UroC
(100 uM) was added to cultures (in mMABB+H media) at the start of growth and urolithins were
extracted after 24 h anaerobic incubation, then analyzed by LC-MS. Left: Representative
chromatograms (A = 305 nm) for each experimental group (from one representative biological
replicate). The same scale was used for each chromatogram. Right: Quantification of urolithin
peak areas relative to a salicylic acid internal standard (IS) (n = 3 biological replicates). Data
are represented as mean = SEM. C) Phylogenetic tree of tested Enterocloster spp. type strain
16S rRNA sequences constructed using the Genome-to-Genome Distance Calculator (GGDC)
Phylogeny Server 0. Maximum likelihood (ML) tree inferred under the GTR+GAMMA model
and rooted by midpoint-rooting. The branches are scaled in terms of the expected number of
substitutions per site. The numbers above the branches are support values when larger than
60% from ML (left) and maximum parsimony (right) bootstrapping. The GenBank accession
numbers are provided to the right of each taxon. Source data and statistical details are provided
as a Source data file.

A putative urolithin C dehydroxylase metabolic gene cluster is upregulated upon
urolithin C treatment.

To understand when uroC metabolism machinery was being expressed, we first sought
to characterize the kinetics of uroC dehydroxylation in rich media (mABB+H). Therefore, a
simultaneous growth and metabolism experiment was designed, whereby uroC was spiked into
E. asparagiformis and E. bolteae cultures during the exponential phase of growth and
metabolites were measured by LC-MS (Fig. 2A). Treatment with uroC during the exponential
phase did not affect growth of either bacterium compared to the DMSO control (Fig. 2B). In
both bacteria, quantitative conversion of uroC to uroA occurred within 4 h post-spike-in (Fig.

2C,D), demonstrating that metabolism in rich media is fast and robust.

We next sought to determine whether uroC metabolism is inducible or constitutive. To test for
inducibility, both bacteria were treated with DMSO or uroC during exponential growth, then
washed and resuspended in PBS, yielding cell suspensions unable to synthesize new proteins.
Metabolism of uroC to uroA was inducible as only cells originating from bacteria grown with

7
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uroC were capable of uroA production (Fig. 2E). Consequently, we performed RNA-sequencing
to compare gene expression in DMSO and uroC-treated cultures of E. asparagiformis and E.
bolteae. Since uroA was detected in both bacterial cultures as soon as 2 h post spike-in (Fig.

2C), this timepoint was selected to isolate mMRNA.

RNA sequencing of uroC-induced cultures revealed a distinct gene cluster, which we term uroC
dehydroxylase (ucd), that was highly and differentially expressed (log2FC > 8) in both E.
asparagiformis (Fig. 2F) and E. bolteae (Fig. 2G). In both bacteria, these clusters contained
adjacent genes that were expressed to similar log2FC values: a xanthine dehydrogenase family
protein subunit M, a (2Fe-2S)-binding protein, and a molybdopterin-dependent oxidoreductase
(Fig. 2F,G). These genes will hereafter be referred to as ucdC (for coenzyme), ucdF (for
ferredoxin), and ucdO (for oxidoreductase), respectively. Interestingly, we also observed an
upregulation of genes involved in efflux (MepA-like multidrug and toxin extrusion (MATE)
transporters) and iron transport (FecCD-like) (Fig. 2F,G), suggesting a link between uroC

metabolism, iron uptake, and efflux.
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Figure 2. Urolithin C treatment upregulates a putative dehydroxylase operon.

A) Experimental design of uroC (100 uM) spike-in experiments during the exponential phase of
growth. For each biological replicate in this design, growth (B), metabolism (C,D), and RNA-
seq (F-G) results are matched. B) Growth curve (optical density (OD) at 620 nm) of DMSO or
uroC-spiked E. asparagiformis (Ea) and E. bolteae (Eb) type strain cultures according to the
design in (A). 200 pL of culture were sampled at each timepoint and ODs20 was measured in a
96-well plate (n = 4 biological replicates). The same sampled culture was then frozen and
extracted for analysis by LC-MS (C,D). C) Representative chromatograms (A = 305 nm) of
cultures sampled 2 h post-spike-in (from one representative biological replicate). The same
scale was used for each chromatogram. D) Quantification of urolithin concentrations from peak
areas relative to a salicylic acid internal standard (IS) over 4 h in uroC-spiked Ea and Eb type
strain cultures (n = 4 biological replicates). E) Quantification of urolithin A concentrations in
DMSO- or uroC-treated Ea and Eb cell suspensions. Cell suspensions were prepared from Ea
and Eb cells grown with either DMSO or 50 uM uroC. The cells were washed and resuspended
in PBS to halt the production of new enzymes, then treated with DMSO or 100 yM uroC (n =3
biological replicates). F,G) Manhattan plots of genes altered by uroC treatment in Ea (F) and
Eb (G) based on DESeqg2 analysis (n = 4 biological replicates). Data points are colored
according to their adjusted p-value (based on the Benjamini-Hochberg-corrected Wald
statistic). Grey, p-adj = 0.05. Red or blue, p-adj < 0.05 for Ea and Eb, respectively. The genomic
organization around the differentially expressed genes (generated from the NCBI Sequence
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Viewer) is depicted above Manhattan plots, which show the most highly and differentially
expressed genes by RNA-seq. Genes are colored according to their log2FC values. NCBI
accessions for select proteins encoded by highlighted genes are provided. H) Primer design for
RT-PCR (I) experiment targeting the Eb ucd gene cluster. The same reverse primer was used
for both the reverse transcription step and the subsequent PCR reaction. 1) 1% agarose gel
image of RT-PCR amplicons using primers (H) that span the full-length Eb ucd gene cluster
(from one biological replicate). NTC, no template control. J) RT-qPCR expression of each gene
in the Eb ucd operon. Growing Eb cultures were treated with DMSO or uroC (100 uM) for 2 h
before RNA isolation and reverse transcription (n = 3 biological replicates). Gene expression
profiles of each target gene in the Eb ucd gene cluster displayed as log2FC (equivalent to -
AAC:, where AACt = ACt uroc - ACt bmso) with lines connecting paired biological replicates;
repeated-measures one-way ANOVA with Tukey's multiple comparisons test; ns, not
significant. Data are represented as mean + SEM (behind symbols) in (B,D,E). FC, fold change
(uroC/DMSO); Source data and statistical details are provided as a Source data file.

The ucd metabolic gene cluster is organized in an operon.

We next sought to characterize the ucd metabolic gene cluster in E. bolteae since this
bacterium is considered a core species of the gut microbiome 8. Based on the proximity, sense,
and expression levels of each of the three genes by RNA-seq (Fig. 2G), we hypothesized that
all three genes in the cluster were organized in an operon. We designed a gene-specific RT-
PCR assay that would enable the detection of full-length polycistronic ucdCFO genes using
cDNA from DMSO- or uroC-treated E. bolteae as a template (Fig. 2H). An amplicon of the
expected size (~3.6 kb) was detected only in cDNA derived from uroC-treated E. bolteae,
validating the inducibility of these genes (Fig. 2l). Long-read sequencing of the obtained
amplicon yielded a sequence corresponding to the E. bolteae ucdCFO metabolic gene cluster
with 100% identity (Supplementary Sequence 1). Using an independent set of E. bolteae
cultures, we then performed RT-qPCR on DMSO- or uroC-treated E. bolteae with all three
genes in the putative operon as targets. Similar to our RNA-seq results, all three genes were
highly induced (mean log2FC = 9.7 for all three ucd genes) relative to DMSO controls and were
expressed at the same level (Fig. 2J). These results indicate that the ucdCFO genes are

transcribed as a single polycistronic mRNA and therefore form a uroC-inducible operon.
10
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The ucd operon is induced by 9-hydroxy urolithins.

Next, we aimed to determine the substrate scope of the ucd operon. Multiple urolithins
possess pyrogallol, catechol, and phenol structural motifs that are dehydroxylated at various
positions by gut bacteria (Supplementary Fig. 1). Interestingly, E. bolteae only metabolizes the
9-position hydroxyl group of urolithins (Supplementary Fig. 3A-D) and does not require adjacent
hydroxyl groups since isouroA is dehydroxylated to uroB (Supplementary Fig. 3D) 38. Since
dehydroxylation of urolithins in E. bolteae is position specific, we hypothesized that the ucd
operon would be induced by other 9-hydroxy urolithins (uroM6 and isouroA). Therefore, we
performed RT-qPCR on DMSO-, uroM6-, uroC-, or isouroA-treated E. bolteae cultures using
the ucdO gene as a target. Each urolithin significantly induced the expression of the ucd operon
to a similar extent (Supplementary Fig. 3E-F). In addition, E. bolteae cell suspensions induced
with uroC were capable of dehydroxylating uroM6 (Supplementary Fig. 3G) and isouroA
(Supplementary Fig. 3H), indicating that the same proteins induced by uroC can metabolize
structurally similar 9-hydroxy urolithins. Thus, it is likely that the same metabolic enzymes,

encoded by the E. bolteae ucd operon, are acting on 9-hydroxy urolithins.

Presence of ucd operon homologs in genomes predicts urolithin C metabolism by gut
bacteria.

We wondered whether novel metabolizers of uroC could be discovered based on
nucleotide sequence homology to the ucd operon. Homology searches using the E. bolteae
ucd operon sequence confirmed that only uroC-metabolizing Enterocloster spp. (E.
asparagiformis, E. bolteae, and E. citroniae) possessed homologs of the ucdCFO genes with a
similar organization (Supplementary Fig. 4). In addition, the gut bacterium Lachnoclostridium
pacaense *' was identified as another hit (Supplementary Fig. 4). The type strain of this

bacterium (CCUG 71489T = Marseille-P3100) was closely related to Enterocloster spp. based

11
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on 16S rRNA, whole genome, and whole proteome phylogenies (Fig. 3A, Supplementary Fig.
2A B, respectively). L. pacaense possessed genomic sequences with high homology (86.5%
nucleotide identity) and identical functional annotations to the E. bolteae ucd operon sequence
(Fig. 3B). When incubated with uroC, L. pacaense CCUG 71489T quantitatively produced uroA
(Fig. 3C,D). We searched for homologs of the E. bolteae ucd in the genomes of urolithin- and
catechol-metabolizing bacteria belonging to the Eggerthellaceae but could not identify any hits.
Notably, Eggerthellaceae lack 9-hydroxy urolithin dehydroxylase activity 337, which correlates
with an absence of ucd-like operons in their genomes (Fig. 3B). These comparative genomics

data indicate that the presence of a ucd operon in genomes predicts uroC metabolism by gut

bacteria.
%ID to uroC  uroA
1 kb Eb ucd
D i
Converts Enterocloster asparagiformis G 84.3 +uroC
UroC—» UroA g
[ ves [Jno 183 Enterocloster lavalensis [_] ND Media
Lp
/63 Enterocloster boiteae [ 100.0 L s
Ak Enterocloster clostridioformis |:| ND Retention time (min)
1001100 Enterocioster citroniae [l 85.3 [urolithin] (uM)
egrmo[ Enterocloster aldenensis |:| ND el 0 5|O 1?0 15.0
P S
Lachnociostridium pacaense [ 825 Media I3
911100 r Gordonibacter pamelaeae |:| ND Lp 4ND
100/100 Gordonibacter urolithinfaciens |:| ND I
0.04 ouroC @ uroA
Eliagibacter isourolithinifaciens |:| ND ND not detected

FAD 2Fe-25 XDH
binding binding a/b

Moco
binding

Figure 3. Urolithin C metabolism correlates with ucd operon prevalence in gut bacteria.

A) Phylogenetic tree of Enterocloster spp., Lachnoclostridium pacaense (Lp), and catechol-
metabolizing Eggerthellaceae type strain 16S rRNA sequences constructed using the Genome-
to-Genome Distance Calculator (GGDC) Phylogeny Server 40, Maximum likelihood (ML) tree
inferred under the GTR+GAMMA model and rooted by midpoint-rooting. The branches are
scaled in terms of the expected number of substitutions per site. The numbers above the
branches are support values when larger than 60% from ML (left) and maximum parsimony
(right) bootstrapping. Bacteria that convert uroC to uroA are labeled with grey squares. B) NBCI
Multiple Sequence Aligner viewer hits for BLASTn searches using the E. bolteae DSM 15670
ucd operon nucleotide sequence as a query against the NCBI refseq_genomes database. Only
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hits with 2 90 % query coverage and species-level taxonomic resolution are displayed with %
identity to the query sequence. Domain annotations for each gene are denoted below according
to InterPro annotations for corresponding proteins. ND, Not detected; Moco, Molybdenum
cofactor. C,D) In vitro metabolism of uroC by Lp. UroC (100 yM) was added to cultures (in
mABB+H media) at the start of growth and urolithins were extracted after 24 h anaerobic
incubation, then analyzed by LC-MS. C) Representative chromatograms (A = 305 nm) for each
experimental group (from one representative biological replicate). The same scale was used
for each chromatogram. D) Quantification of urolithin peak areas relative to a salicylic acid
internal standard (IS) (n = 3 biological replicates). Data are represented as mean + SEM.
Source data and statistical details are provided as a Source data file.

A molybdopterin cofactor biosynthetic gene cluster is upregulated upon urolithin C
treatment.

In addition to the three genes in the ucd operon, we observed a significant increase
(log2FC = 2.6) in 9 molybdopterin cytosine dinucleotide (MCD) biosynthesis genes upon uroC
treatment (Fig. 2F,G, Supplementary Fig. 5A). These 9 genes, which recapitulate the function
of 10 genes in E. coli 2, are involved in molybdenum cofactor biosynthesis (moaAC, mogA,
moeA), molybdate ion transport (modABCE), cytosine addition to the molybdenum cofactor
(mocA), and MCD cofactor insertion into the active site (xdhC) (Supplementary Fig. 5B) 42. All
9 genes cluster in the genomes of E. asparagiformis and E. bolteae and are organized into 2
adjacent operons (Supplementary Fig. 5C) that are induced upon uroC treatment. Based on
sequence homology to E. coli oxidoreductases and MCD biosynthetic machinery, proteins
encoded by the ucd operon belong to the xanthine dehydrogenase family 3. These findings
imply that uroC dehydroxylation is MCD-dependent, which differs from the bis-molybdopterin

guanine dinucleotide requirement of catechol dehydroxylases in Eggerthellaceae 1014,

The UcdCFO complex enables anaerobic electron transport from NADH to uroC
Since oxidoreductases utilise a variety of cofactors and coenzymes for catalytic activity,

we sought to determine the redox coenzymes and conditions necessary for uroC
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dehydroxylation. Therefore, we performed metabolism assays using crude lysates from uroC-
induced E. bolteae. As crude lysates alone did not metabolize uroC, various redox coenzymes
(NADPH, NADH, and FAD) were added to lysates to promote uroC dehydroxylation (Fig. 4A).
Only NADH-treated lysates yielded quantitative dehydroxylation of uroC to uroA compared to
the no cofactor control (Fig. 4A). Interestingly, the addition of free FAD partially inhibited uroC
dehydroxylation in NADH-treated lysates (Fig. 4A), likely by decreasing the free NADH pool.
NADPH, which differs from NADH by a phosphate group on the 2’-OH group of the adenosine
moiety, was unable to promote uroC dehydroxylation, indicating some specificity in the redox
cofactors necessary for dehydroxylation. Aerobic incubation of crude lysates supplemented
with NADH completely inhibited uroC dehydroxylation (Fig. 4B), indicating that the active
enzyme complex requires a strictly anaerobic environment for dehydroxylation, as has been

demonstrated for various metalloenzymes 44.

To confirm that ucd operon-encoded proteins were expressed in E. bolteae crude lysates, we
performed untargeted proteomics and compared protein expression upon DMSO or uroC
treatment. Indeed, all 3 proteins encoded by the ucd operon (UcdC, UcdF, and UcdO) were the
most differentially expressed proteins in the uroC treatment group (Fig. 4C). In addition,
proteins involved in MCD biosynthesis were also strongly increased upon uroC treatment (Fig.
4C,D, Supplementary Fig. 5A), pointing to the coordination between MCD biosynthesis and
active UcdCFO oxidoreductase assembly. These multi-omics datasets implicate all three
ucdCFO genes and MCD biosynthesis genes in the metabolism of uroC to uroA, as
demonstrated by the strong positive correlation between transcript and protein differential

expression (Fig. 4D).

To validate the function of the E. bolteae ucd operon, we attempted heterologous expression

of E. bolteae UcdCFO in E. coli; however, all expression and activity assays were unsuccessful
14
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despite the inclusion of mocA and xdhC genes involved in MCD maturation in our expression
plasmids. This lack of activity likely resulted from the choice of heterologous host and from the
complex assembly of active molybdoenzymes 4. We therefore attempted to express UcdCFO
in the phenol-degrading soil bacterium Rhodococcus erythropolis using a thiostrepton-inducible
expression system 4 (pTipQC2-ucdCFO, Supplementary Fig. 6A,B), previously used to
express the anaerobic E. lenta Cgr2 protein 44. Despite the poor yield of soluble protein
(Supplementary Fig. 6C,D), we were able to observe uroM6 and uroC dehydroxylation at the
9-position in crude lysates of R. erythropolis transformed with pTipQC2-ucdCFO, but not in the
no insert control (pTipQC2) (Fig. 4E, Supplementary Fig. 6E-G), thus confirming that the ucd

operon confers 9-hydroxy urolithin dehydroxylase activity.

To gain an understanding of the structural organization of proteins encoded by the ucd operon,
we performed modeling using AlphaFold2 4647, Structures of each protein encoded by the E.
bolteae ucd operon (Fig. 4F) were superposed onto published X-ray crystal structures of
xanthine dehydrogenase family enzymes with similar folds 48, yet from different taxonomic
domains: Afipia carboxidovorans carbon monoxide dehydrogenase #° and Bos taurus xanthine
dehydrogenase %°. The 3 proteins encoded by the ucd operon formed subunits in an
oxidoreductase complex with a similar quaternary structure to the published crystal structures
(Fig. 4G, Supplementary Fig. 7A,B). The predicted quaternary structure of the UcdCFO enzyme
complex supported a complete electron transport chain whereby electrons would flow from
reduced FAD to two 2Fe-2S clusters, then to the MCD cofactor, and finally to uroC as the
terminal electron acceptor (Fig. 4H, Supplementary Fig. 7C,D). This model supports our
findings in crude lysates whereby NADH serves as an electron donor to reduce UcdC-bound
FAD (Fig. 4A). Using homology modeling, we further identified the putative uroC binding site in

UcdO, which overlaps with the salicylic acid ligand in the Bos taurus xanthine dehydrogenase
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structure (Supplementary Fig. 7E). This putative uroC binding site contains multiple tyrosine
(Y375, Y538, Y624, Y632), tryptophan (W345), and phenylalanine (F458, F464) residues that
could form 1-11 stacking interactions with uroC (Supplementary Fig. 7F), orienting it towards

the molybdenum cofactor.
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Figure 4. The UcdCFO complex enables anaerobic electron transport from NADH to
uroC.

A) Quantification of urolithin peak concentrations in crude uroC-induced Eb lysates re-treated
with DMSO or uroC (350 uM) and various coenzymes (n = 3 biological replicates). NADPH,
nicotinamide adenine dinucleotide phosphate; NADH, nicotinamide adenine dinucleotide; FAD,
flavin adenine dinucleotide. B) Quantification of urolithin peak concentrations in crude uroC-
induced Eb lysates re-treated with DMSO or uroC (350 yuM) and NADH in anaerobic or aerobic
environments (n = 3 biological replicates). Data are represented as mean + SEM for (A,B). C)
Volcano plot of untargeted proteomics analysis on DMSO or uroC-treated Eb (n = 3 biological
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replicates). Data points are colored according to their significance (Fisher's exact test with
Benjamini-Hochberg correction for multiple comparisons). Grey, p-adj = cutoff p-value
(0.00048). Blue, p-adj < cutoff p-value (0.00048). D) Scatter plot showing the correlation
between gene and protein expression (log2FC values) induced in uroC-treated Eb using the
datasets in Fig. 2G and Fig. 5C, respectively. The non-parametric Spearman rank correlation
test was used for statistical analysis. E) LC-MS extracted ion chromatograms (EIC) of uroC ([M-
H] = 243) and uroA ([M-H] = 227) from a representative anaerobic uroC dehydroxylation assay
using crude lysates of R. erythropolis harboring either pTipQC2 (no insert) or pTipQC2-ucdCFO
plasmids. F) Domains of genes in the ucd operon based on InterPro annotations. G) Quaternary
structure prediction of the proteins encoded by the Eb ucd operon. AlphaFold2 structures for
each protein were superposed onto the X-ray crystal structure of PDB 1ZXI (carbon monoxide
dehydrogenase from Afipia carboxidovorans OM5). H) Small molecule ligands from PDB 1ZXI
in the superposed UcdCFO model form a complete electron transport chain from FAD to two
2Fe-2S clusters to a molybdopterin cytosine dinucleotide cofactor, which can then reduce uroC
(terminal electron acceptor). Source data and statistical details are provided as a Source data
file.

Disruption of the urolithin C catechol moiety rescues growth delay in iron-limited media

To gain an understanding of why Enterocloster spp. and L. pacaense metabolize 9-
hydroxy urolithins, we performed growth experiments in different media conditions. When uroC
was added prior to growth in rich medium containing hemin (mABB+H), a concentration-
dependent increase in lag time was observed for all uroC-metabolizing bacteria (Fig. 5A,B). As
catechols are common structural motifs in iron-binding siderophores %', we hypothesized that
uroC was delaying growth by altering iron availability in the growth medium via its catechol
moiety. Incubation of Enterocloster spp. and L. pacaense in medium lacking added iron (mABB)
exacerbated the growth delay by uroC (Fig. 5C, Supplementary Fig. 8A,B); however, this
growth delay was partially rescued upon supplementation of different iron sources (hemin,
Fe(I1)SOs4, or Fe(lll) pyrophosphate) (Fig. 5C, Supplementary Fig. 8C). To validate that iron
chelation could extend the lag time of Enterocloster spp. and L. pacaense, we incubated all
four uroC-metabolizers with 2,2’-bipyridyl (biP) in mABB media. As observed with uroC, biP
delayed the growth of all tested bacteria, but supplementation of Fe(l1)SOa4, or Fe(lll)

pyrophosphate could partially rescue growth delay (Supplementary Fig. 8C). Interestingly,
17
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357 uroA, which lacks a catechol moiety, did not impact the growth of the tested bacteria in either
358 mABB or mABB+H media compared to uroC (Fig. 5C, Supplementary Fig. 8A,B). To confirm
359 that the catechol moiety of uroC was responsible for delaying growth, we synthesized a
360 methylated analogue of uroC (8,9-di-O-methyl-uroC, Fig. 5D, Supplementary Fig. 9A-F), which
361 is unable to bind iron %2, and tested its effect on growth in mABB. Like uroA, 8,9-di-O-methyl-
362 uroC did not delay growth of uroC-metabolizing bacteria (Fig. 5E,F). These data demonstrate
363 that both the catechol moiety of uroC and iron availability are essential to uroC-mediated lag

364 phase extension.

365 Dehydroxylation of catechols by gut bacteria has been observed for diverse classes of
366 compounds like neurotransmitters, therapeutic drugs, and diet-derived polyphenols 4. Although
367 catechol dehydroxylation can promote growth in some species '#, we hypothesized that
368 dehydroxylation could be a mechanism used by gut bacteria to inactivate catechol-containing
369 compounds that affect their fithess. To determine whether diverse catechols can delay growth,
370 uroC-metabolizing bacteria and the dopamine-metabolizing Eggerthella lenta A2 were
371 incubated with catechol-containing compounds and their dehydroxylated counterparts: uroC
372 (uroA), entacapone, dopamine (m-tyramine), caffeic acid (m-coumaric acid) (Fig. 5D).
373  Surprisingly, neither dopamine nor caffeic acid (and their dehydroxylated counterparts) delayed
374  the growth of the tested bacteria (Fig. 5G). On the other hand, both uroC and the nitrocatechol-
375 containing Parkinson’s drug entacapone delayed the growth of Enterocloster spp. and L.
376 pacaense but did not affect E. lenta A2 (Fig. 5G) 8. Thus, catechol-containing compounds show
377  differential effects on the growth of gut bacteria, depending on their structure. These results
378 prompted us to investigate the effect of uroC on a more diverse panel of gut bacteria including
379 E. aldenensis, E. clostridioformis, and E. lavalensis, which do not metabolize uroC, along with

380 Gordonibacter spp., which produce uroC from dietary ellagic acid 3°. Treatment with uroC
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delayed the growth of E. aldenensis , E. clostridioformis, and E. lavalensis to varying extents
(Supplementary Fig. 10A); however, there was no difference in growth between the DMSO-,
uroC-, and uroA-treated cultures of Enterococcus faecium and Gordonibacter spp.
(Supplementary Fig. 10B,C). Thus, all Enterocloster spp. tested showed sensitivity to uroC-

mediated lag time extension, while other bacteria were insensitive to its effects on growth.
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Figure 5. The catechol moiety of uroC delays Enterocloster spp. growth in an iron-
dependent manner.

A) Growth curves (optical density (OD) at 620 nm) of uroC-metabolizing Enterocloster spp. and
L. pacaense treated with increasing concentrations of uroC in rich mABB+H media (7.7 yM
hemin) (n = 3 biological replicates). Data are represented as mean + SEM. B) Quantification of
the difference in lag time compared to the DMSO control for growth curves in (A). Data are
represented as mean + SEM; lines were fitted using simple linear regression. C) Quantification
of the difference in lag time of Enterocloster spp. and L. pacaense grown in mABB (no added
iron) or mABB+H (7.7 yM hemin) compared to respective DMSO controls for growth curves in
Supplementary Fig. 8A,B. Data are represented as mean + SEM; repeated measures two-way
ANOVA (matching by biological replicate) with Tukey’s multiple comparisons test. Significant
differences between treatments for individual bacteria are denoted by a different lowercase
letter above each plot. D) Structures of tested catechols and their derivatives. E) Growth curves
(OD at 620 nm) of uroC-metabolizing Enterocloster spp. and L. pacaense grown in mABB
media and treated with DMSO (vehicle), 100 uM of uroC, uroA, or 8,9-di-O-methyl-uroC (n = 3
biological replicates). Data are represented as mean + SEM. F) Quantification of the difference
in lag time compared to the DMSO control for growth curves in (E). Data are represented as
mean * SEM; repeated measures two-way ANOVA (matching by biological replicate) with
Tukey’s multiple comparisons test. Significant differences between treatments for individual
bacteria are denoted by a different lowercase letter above each plot. G) Growth curves (OD at
620 nm) of uroC-metabolizing Enterocloster spp., L. pacaense, and E. lenta A2 grown in mABB
media and treated with DMSO (vehicle), 100 uM of uroC, uroA, entacapone, dopamine, m-
tyramine, caffeic acid or m-coumaric acid. Data are represented as mean £ SEM.

UroC-metabolizing species and ucd genes are prevalent and correlate with uroC
metabolism in human fecal samples.

We next wondered whether uroC-metabolizing Enterocloster spp. and their ucd operons
were prevalent and active in human fecal samples. We first utilized uniformly processed
metagenomic data from the curatedMetagenomicData R package 3. After filtering for fecal
samples (86 studies, n = 21,030 subjects), we counted the prevalence of at least one uroC-
metabolizing species and at least one ucd gene homolog (Methods). The prevalence of both
features was variable across studies (Fig. 6A for studies with >200 participants, Supplementary
Fig. 11A for all studies). Combining all studies, the prevalence of at least one uroC-metabolizing

species and at least one ucdCFO gene homolog was 9,343/21,030 (44.9%) and 4,356/21,030
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(20.7%), respectively. E. bolteae was the most prevalent and abundant uroC-metabolizing
species detected in gut metagenomes (Supplementary Fig. 11B,C) and correlated strongly with
ucd abundance (Supplementary Fig. 11D). These findings suggest that uroC-metabolizing
Enterocloster spp. and ucd operon genes are prevalent in human fecal metagenomic samples

and reflect the variable urolithin metabolism profiles (metabotypes) in the general population

25,54

Next, we performed ex vivo metabolism assays to determine whether Enterocloster spp. could
metabolize uroC in the context of a complex community. Fecal slurries from 10 healthy
individuals were first profiled according to their uroC metabotypes (Fig. 6B) 2*. Individuals
clustered into metabotypes A (only uroA produced), B (uroA and isouroA/uroB), and 0 (no
terminal urolithin metabolites). While we observed metabotypes A and B in uroC-metabolizing
fecal slurries, all slurries produced some amount of uroA from uroC. Stools JL73, TR06, and
YE96 displayed variable metabolism patterns and did not metabolize uroC in some
experiments, likely reflecting differences in activity between aliquots of feces (Fig. 6B). We then
repeated metabolism assays using fecal slurries from all 10 healthy individuals and extracted
urolithins, DNA, and RNA from each culture. In this experiment, only 5/10 fecal slurries
metabolized uroC to uroA (Fig. 6C). We hypothesized that differences in metabotypes could be
explained by microbial composition. Therefore, long-read V1-V9 16S rRNA sequencing was
performed on fecal slurries. Both DMSO- and uroC-treated fecal slurries within individuals had
similar microbial compositions and diversity metrics (Supplementary Fig. 12A-D) but showed
differences in composition between individuals and metabolism status (Supplementary Fig.
12A,E). Surprisingly, all samples contained 16S rRNA sequences mapping to E. bolteae, and
many non-metabolizing fecal slurries contained E. asparagiformis (Fig. 6C, Supplementary Fig.

12B). We then assayed genomic DNA from treated fecal slurries for the presence of the ucd
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445 operon by PCR and found that 10/10 individuals (19/20 conditions) yielded a detectable
446  amplicon of the expected size (~3.6 kb) (Supplementary Fig. 12F,G). These data indicate that
447  the prevalence of uroC-metabolizing Enterocloster spp. 16S rRNA and ucd operon genes does
448 not predict metabolism in fecal samples.
449 We then surmised that the ucd operon would be transcribed only in fecal slurries actively
450 metabolizing uroC. Using a gene-specific reverse primer that binds to ucdO (Fig. 2H), the full-
451 length ucd operon was reverse transcribed and amplified in RNA extracted from DMSO- and
452  uroC-treated fecal slurries. An amplicon (~3.6 kb) corresponding to the ucd operon was only
453 detected in uroC-metabolizing fecal slurries (Fig. 6D) when treated with uroC and entirely
454  absent from non-metabolizing slurries (Fig. 6E). This amplicon was absent in no reverse
455 transcriptase controls, indicating no gDNA contamination (Supplementary Fig. 12H,l). These
456 data demonstrate that ucd transcription correlates with uroC metabolism in complex fecal
457 communities and that E. bolteae is keystone species involved in urolithin A production.
A N B Metabotype C
W ucdCFO gene(s) ) 1500 BB BAAAAADD OO
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Figure 6. The ucd operon is prevalent in metagenomes and actively transcribed in
urolithin C-metabolizing human fecal samples.

A) Prevalence of ucd operon (at least one gene) and of a uroC-metabolizing species (at least
one species) in fecal metagenomes from the CuratedMetagenomicData R package. Only
studies with 2200 participants are depicted. All 86 studies are available in Supplementary Fig.
11. B) Summary of urolithin concentrations in fecal slurries (n = 10 healthy donors) incubated
with 100 uM uroC for 48 h. Data are represented as mean + SEM (n = 3-6 experimental
replicates). C) Summary of urolithin concentrations in fecal slurries (n = 10 healthy donors)
incubated with 100 uM uroC for 48 h. Presence of uroC-metabolizing species and of the ucd
operon is denoted above the graph if the bacterium or operon was detected in the uroC-treated
fecal slurry (Supplementary Fig. 12B,F,G). Data are representative of 1 replicate where DNA
and RNA was also extracted from fecal slurries. D,E) ucd gene-specific RT-PCR on fecal
microbiota communities from 10 healthy donors using the primer set described in Fig. 2H.
Samples are matched to the urolithin metabolism data in C) and 16S rRNA sequencing in
Supplementary Fig. 12A-E. 1% agarose gel of amplicons derived from D) uroC-metabolizing
and E) non-metabolizing fecal slurries. Bands corresponding to the E. bolteae ucd operon (~3.6
kb) are labeled with red arrows. The no template control (NTC) is the same for (D,E). See
Supplementary Fig. 12H,| for the no reverse transcriptase control PCR reactions on the same
samples. Source data are provided as a Source data file.

Discussion

We identified genes and proteins that are essential for the metabolism of urolithins by
gut resident Lachnospiraceae through a combination of transcriptomics, comparative
genomics, and untargeted proteomics. Our study reveals a novel multi-subunit molybdoenzyme
(urolithin C dehydroxylase, Ucd) that catalyzes the dehydroxylation of 9-hydroxy urolithins
including uroM6, uroC, and isouroA. Importantly, prevalence analysis in published data and ex
vivo transcriptomics established E. bolteae as a keystone urolithin-metabolizing member of the

gut microbiota.

Catechol dehydroxylases are widespread in gut resident Eggerthella lenta and
Gordonibacter spp. %1455 These molybdoenzymes, which belong to the DMSO reductase

superfamily %, dehydroxylate substrates like catechol lignan (Cldh), dopamine (Dadh), DOPAC
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(Dodh), hydrocaffeic acid (Hcdh), and caffeic acid (Cadh), which can promote growth by using
these substrates as alternative electron acceptors '. A recent survey of reductases in gut
bacteria established that most respiratory reductases contain N-terminal signal sequences and
are translocated across the cytoplasmic membrane, while non-respiratory reductases, which
lack signal sequences, remain in the cytoplasm °’. The UcdCFO enzyme complex we found in
Enterocloster spp. differs from catechol dehydroxylases in Eggerthellaceae in important ways
as it does not require a catechol structural motif for activity, belongs to the xanthine oxidase
superfamily, and is composed of 3 subunits that each lack signal sequences. Based on the
absence of signal sequences and the cytoplasmic localization of xanthine dehydrogenases, the
ucd operon likely encodes for a non-respiratory reductase serving a different role than

previously characterized catechol dehydroxylases °”.

In rich media conditions, uroC, but not uroA, extended the lag phase of growth in both
uroC-metabolizing and non-metabolizing Enterocloster spp. This growth delay was not
observed for other taxa, suggesting that Enterocloster spp. are especially sensitive to uroC-
mediated iron chelation. In addition to the ucd operon, uroC-treated E. bolteae and E.
asparagiformis upregulated gene clusters related to efflux (MepA-like MATE family efflux
transporters) and iron/siderophore transport (FecCD-like ABC transporter). These responses
are analogous to antimicrobial resistance mechanisms raised against entacapone and other
non-antibiotic drugs 8. This suggests that non-respiratory uroC dehydroxylation could serve as
an additional strategy that evolved in E. asparagiformis, E. bolteae, E. citroniae, and L.

pacaense to overcome catechol-mediated iron chelation.

While uroA is the most common terminal metabolite following ellagitannin consumption
in humans, its production varies widely 36. Interestingly, the ability of a fecal sample to produce

uroA from uroC did not correlate with the presence of widespread uroC-metabolizing
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Enterocloster spp. or a ucd gene homologue, likely owing to poor viability or dead bacteria in
fecal samples. However, the active transcription of the ucd operon correlated perfectly with
metabotypes. These findings further emphasize the importance of functional assays such as
transcriptomics and ex vivo metabolism to understand the metabolism of xenobiotics by the gut

microbiota.

By identifying the genetic basis for metabolism of uroC, we found a novel metabolizing
species that could not have been predicted based on phylogeny alone. Our data suggests that
ucd-containing Enterocloster spp., and the closely related L. pacaense, are the main drivers of
urolithin A production in the gut microbiota based on their prevalence in metagenomes and
activity in fecal samples. However, we cannot conclude that they are solely responsible for this
activity. Rare, strain-specific urolithin A production has been reported for Bifidobacterium
pseudocatenulatum INIA P815 36, Streptococcus thermophilus FUA329 58, and Enterococcus
faecium FUA027 %8, which may be a result of horizontal gene transfer since it is not shared by
other members of the taxa. Thus, further enzyme discovery efforts are necessary to understand

urolithin production in these bacteria.

In conclusion, our studies reveal the genetic and chemical basis for urolithin A production
by gut bacteria and broaden our understanding of the molecular mechanisms underlying
urolithin metabotypes in human populations. Since diet can modulate gut microbiota function
and host health, elucidating the xenobiotic metabolism genes encoded by gut bacteria will be

key to developing dietary interventions targeting the gut microbiota.
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Supplementary Figure 1. Ellagitannins are metabolized by gut bacteria.

Reaction scheme of dietary ellagitannin metabolism by the human gut microbiota. Larger
ellagitannin structures are hydrolyzed during gut transit, releasing hexahydroxydiphenic acid,
which spontaneously lactonizes into ellagic acid. Once in the gut lumen, members of the
Gordonibacter spp. and Ellagibacter isourolithinifaciens can decarboxylate ellagic acid, forming
urolithin M-5. The resulting urolithin M-5 can be further dehydroxylated (at the 4,10- or 4,8,10-
positions) to uroC or isourolithin A by Gordonibacter spp. or Ellagibacter isourolithinifaciens,
respectively. Compounds colored in light gray are urolithin metabolites that are rarely observed
during ex vivo metabolism assays on ellagitannins. Once uroC or isouroA are produced,
Enterocloster spp. can further dehydroxylate the 9-position, yielding uroA or uroB, respectively.
The cartoon was generated in BioRender.
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Supplementary Figure 2. Enterocloster spp. whole genome and proteome phylogenetic
trees.

A) Whole genome phylogenetic tree of Enterocloster spp. The tree was inferred with FastME
2.1.6.1 from Genome BLAST Distance Phylogeny (GBDP) distances calculated from genome
sequences. The branch lengths are scaled in terms of GBDP distance formula d5. The numbers
above branches are GBDP pseudo-bootstrap support values > 60 % from 100 replications, with
an average branch support of 36.8 %. The tree was rooted at the midpoint. B) Whole proteome
phylogenetic tree of Enterocloster spp. The tree was inferred with FastME 2.1.6.1 from whole-
proteome-based GBDP distances. The branch lengths are scaled via GBDP distance formula
d5. Branch values are GBDP pseudo-bootstrap support values > 60 % from 100 replications,
with an average branch support of 100.0 %. The tree was rooted at the midpoint. Source data
are provided as a Source data file.
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Supplementary Figure 3. E. bolteae dehydroxylates urolithins at the 9-position.

A) Chemical structures of urolithin M-6, urolithin C, and isourolithin A along with their
dehydroxylated counterparts urolithin M7, urolithin A, and urolithin B. B) Quantification of
extracted ion chromatogram (EIC) peak areas from Eb cultures sampled after 24 h of growth
with 100 uyM uroM6 (n = 3 biological replicates) with representative extracted ion
chromatograms (EIC) to the right (from one representative biological replicate). The same scale
was used for each chromatogram. C) Quantification of urolithin peak areas from Eb cultures
sampled after 24 h of growth with 100 uM uroC (n = 3 biological replicates) with representative
chromatograms (A = 305 nm) to the right (from one biological replicate). The same scale was
used for each chromatogram. D) Quantification of urolithin peak areas from Eb cultures
sampled after 24 h of growth with 100 pM isouroA (n = 3 biological replicates) with
representative chromatograms (A = 305 nm) to the right (from one biological replicate). The
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same scale was used for each chromatogram. E,F) RT-qPCR expression of the Eb ucdO gene.
Growing Eb cultures were treated with DMSO, uroM6, uroC, or isouroA (100 uM) for 2 h before
RNA isolation and reverse transcription (n = 3 biological replicates). E) Differential Eb ucdO
gene expression comparing DMSO, uroM6, uroC, and isouroA is displayed as target-specific
ACt (Ct Moo Gene - Ct dnak Reference Gene) Values. Data are presented as individual ACt values with
lines connecting paired biological replicates (from the same pre-spike culture); repeated-
measures one-way ANOVA with Dunnett's multiple comparisons test; **, p < 0.01; ***, p <
0.001. F) Gene expression profile of the Eb ucdO gene in different urolithin treatment groups
displayed as log2FC (equivalent to -AAC:, where AAC: = AC:t uraiithin - ACt pmso). Data are
presented as individual log2FC values with lines connecting paired biological replicates;
repeated-measures one-way ANOVA with Tukey's multiple comparisons test. G) Quantification
of extracted ion chromatogram (EIC) peak areas in DMSO- or uroC-treated Eb cell
suspensions. Cell suspensions were prepared from Eb cells grown with either DMSO or 50 uM
uroC. The cells were washed and resuspended in PBS to halt the production of new enzymes,
then treated with 100 uM uroM6 (n = 3 biological replicates). H) Quantification of urolithin
concentrations in DMSO- or uroC-treated Eb cell suspensions (n = 3 biological replicates). For
B-D and G-H, data are represented as mean £ SEM. ND, not detected; ns, not significant; FC,
fold change; FDR, false discovery rate. Source data and statistical details are provided as a
Source data file.
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594
595

WP_002560573.1 i (10d0) WP_002569574.1 (2Fe-28)-binding protein (ucdF) WP_002569575.1 xanthine dehydrogenase family protein subunit M {uodC)

Alignment {bp)

1 500 1K 1,500 2K 2,500 K 3,500 3731
Sequence 10 Organism Start [renforesfenclastnle s e bbbl gt s Ena %id
Query_Eb_ucdh (+) Enteracloster bolieae ATCC BAA-613 1 3,73 100.00
NZ_CP022464.2 (+) Enterocloster bolleae ATCC BAA-613 4,417,875 4,421,605 100.00
NZ_DS480695.1 (+)  Enterocioster bolteas ATCC BAA-613 83,751 87,481  100.00
NZ_KQ235853.1 (+)  Enteracioster botteae WAL- 14578 56 3,786 100.00
NZ_KBB51183.1 ()  Enterocioster boiteae 90A5 1,007 826 1,004,006 100.00
NZ CP089520.1 ) Enterocioster bolleae FDAARGOS 1231 5,255,480 5,251,750 100.00
NZ_PUEMO1000006.1 () Enterocioster boiteas ATCC BAA-613 3,526,729 3,525,899 100.00
NZ_KBB51176.1 (+)  Enterocloster botteae 9067 1612 5342 100.00
NZ_JADNDBO10000009.1 (+)  Enterocloster balieae DI1t1_170403_B11 133 3,863 100.00
NZ_CABKUKO10000009.1 (+)  Enferocloster bolteae MGYG-HGUT-01493 56 3,786 100.00
NZ_CAJJYRO10000031.1  (4)  Enferocloster bolieae SRR413704 110 L 3,840 100.00
NZ_KB851153.1 ) Enteracloster bolteae 9088 469,520 L | | 465,789 99.79
NZ_JADMVRO10000009.1 ()  Enferacioster bolteae 10013028_160321_DF 51,037 i | 47,306 9976
NZ_QRTI01000001.1 () Enterocioster boiteas AF27-9 279,769 276,039 9968
NZ_JAJCJED100000011  (+)  Enferocloster bolieae SL.1.21 790,258 Il 793,988 99.68
NZ_QRUZ01000001.1 (+)  Enterocloster bolteae AF24-13 247,530 251,260 9968
NZ_QRZM01000004.1 (+)  Enteracloster bottoas AF14-18 244,675 248,405 9958
NZ_JAQEEQO10000003.1 ()  Enferocloster bolteas AMGO-1211H-1A 377,463 361,193 99.68
NZ_JAQEBAO100000021 (+)  Enferocioster bolteae AM27-26LE 676620 660,350  99.68
NZ_JADNPFO100000071  (+)  Enferocloster bolleae 1001287H_170206_C8 121,528 125258  09.62
NZ_JAJCINOI00000241 ()  Enterosloster bolieae DFI.2.21 17,125 13,384 9946
NZ_JAJCHKO10000015.1  (+)  Enterogloster sp. 210928-DFL.2.20 74,223 77,954 99.46
NZ_Q5QX01000004.1 ) Enteracloster bolteae TFO9-1AC 62,422 58,692 99.44
NZ JANGCFO10000008.1  (+) Enterocloster bolteae DFI6.108 304,634 | 308,365 99.25
NZ_JAKNDQO100000031 (+)  Enferocloster bolieae DFI.1.16 793,565 | 797,206  99.22
NZ_JAKNDSO100000141 () Enterocloster bolieae DFI.1.208 71,058 | 67,327  99.22
NZ_JAJCLGO10000002.1 ()  Enteragloster bolieae DFI.1.195 793,584 | 797295 9922
NZ_JAJCPTO100000121  (+)  Enterocloster bolieae DFI.1.207 137,454 | 141,185 99.22
NZ_JADMNWO10000003.1 (-} Enieracloster bolleae 10017138170214 170313 Gi2z 180,597 176,866  99.14
NZ_CP034684.1 () Enterocloster boiteae VE303-01 1,016,669 I 1,014,936 99.01
NZ_QYRW01000036.1 (+)  Enterocloster balteae AHGOOO1 208,832 212,563 99.01
NZ_GP053229.1 () Enterocioster boiteae GREP-2 1,089,430 1,085,759 89.01
NZ_KBB51178.1 () Enterocioster boiteae 9083 1,282,403 | 1,278,672 99.01
NZ_KBB51182.1 (+)  Enterocloster bolteae 90A9 2,494,223 | 2,497,954 99.01
NZ_JADNLRO10000005.1 (-} Enterocloster boltzae D401i_170626_F8 151,628 148,097  99.01
NZ_JANKAIOT10000004.1 () Enferoclostar baliaae DSM 29485 281,095 277,364 99.01
NZ_JAETOZ010000014.1 ()  Enterocloster bolieae S19 28,717 24,986 99.01
NZ_QVEN1000003.1 () Enterocioster bolleae jclosinidioformis] AMO7-19 262,297 | 258,566 99.01
NZ_WOPUO01000128.1 ()  Enterocioster boiteae MCC333 94,337 | 90,608  99.01
NZ_L5399545.1 (+)  Lachnoclostridium pacasnse Marseille-P3100 228,289 TR T 1 I 232014 B6.58
NZ_JAJFEBO10000004.1  (+)  Lachnoclostnidium pacaense SL.2.13 348,680 i 1f] Il | I | 358405 86.55
NZ_JAJFDX0100000011 ()  Lachnoclostridiun pacaense DFI.6.51A 407,386 | (Tl I | 403,667 8645
NZ_CABJDDO10000010.1 () Enferocloster citroniae MGYG-HGUT-00198 72,282 (11l I I M1 TNATIIL 68,555  85.34
NZ_QVET01000010.1 - Enteracloster citroniae AF29-4 72,262 [ 111 (AN I I I I [1E 18] 68555 8534
NZ_WQPS01000011.1 ) Enterocloster citroniae MCC335 21,982 L1010 (oM I I I TETH 25709  B5.34
NZ_JAQDJPO10000009.1 (-} Enteracioster cifroniae AM0-31 45,674 I | Il I I UL 41,947 B5.34
NZ_JAQEHNO10000010.1 ()  Enferocioster citroniae AM75-15pHSA 40,723 Il Il | I 111 M0 110 1R 37,006  85.34
NZ_KQ2a5877.1 (+)  [Clostridium] citroniae WAL-19102 asa,a12 (111 (] I e IRATHILI 402,539 8531
NZ_FGZH01000005.1 (+) Enteracloster cifroniae NLAE-21-G70 367413 I 1 Il | I Il | [1E100 371,140 8529
NZ_QYRX01000028.1 (+) Enterasloster citroniae AHGO002 82,098 0[O I [k I [E 1N 85825 8528
NZ_JH376420.1 (+) [Clostridium] citroniae WAL-17108 1,448,820 Nl il I I I I [[ELm 1,452,547 85.29
NZ JADMXC010000015.1 (+)  Enleracloster citroniae J1101437 171009 D5 24,467 110100 00010 0 (AL Ml {1 1 1 28,194 8526
NZ_CP102272.1 (4 [Clostridium] asparagiforme DSM 15981 3,040,154 || MM 0 (1001 (IVRRERTRN0RD 0T TOEANE R0 IR0 (R 1 Il 3086419 8432
NZ_QSBMO01000001.1 (5] Enterocloster asparagiformis AFQ4-15 197,475 || MR 00T 10 I 1100 [T} I 193740 B4.32
NZ_GABMHF 1 () B MGYG-HGUT-02328 43,706 || BN 111 {1010 00T 00 AN A I/ | 47441 B427
NZ_GGE57532.1 (+)  [Clostridium] asparagitorme DSM 15981 426,539 [| IR 0001 AL 0O OO 0 10 430,145  B4.21

Lrerrbrrrrbrrrrirrrebrrerberrrrrrbrrrrbrrrebrerrbrerebrrrrbrrrebrrreber et |
Note: Enterocloster clostridioformis AMO7-19 (NZ_QVEND1000003.1) is mis-assigned i il Ll '

5 9 6 {glosest matzh bpe sirain 3 £ bolese) (e ) o d 500 1K 1,500 3,731
ee hitps: fwww.ncbi.nlm.nih.gov/datasetsigenome/GCF_003433765.1/

597 Supplementary Figure 4. BLASTn searches using the E. bolteae ucd operon genomic
598 sequence identifies homologues in gut bacteria.

599 NBCI Multiple Sequence Aligner viewer hits for BLASTn searches using the E. bolteae DSM
600 15670 ucd operon nucleotide sequence as a query against the NCBI refseq_genomes
601 database (limited to Bacteria). Vertical lines in the sequence alignment represent nucleotide
602 differences (show differences option) and insertions relative to the query sequence. Source
603 data are provided as a Source data file.
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Supplementary Figure 5. Urolithin C treatment upregulates molybdopterin cytosine
dinucleotide cofactor biosynthetic gene clusters.

A) Molybdopterin cytosine dinucleotide (MCD) cofactor biosynthetic pathway. The log2FC
values of MCD cofactor biosynthetic genes upregulated by uroC in both transcriptomics (T) and
proteomics (P) datasets (when available) are provided to the left of the figure for both Ea and
Eb. B) Table of molybdenum cofactor biosynthetic genes found in the genomes of Ea and Eb.
Annotations are based on NCBI (GTF files) and UniProt gene/protein names. Roles are
assigned based on required proteins for molybdenum cofactors in the xanthine
oxidase/dehydrogenase family of enzymes. Accessions, primary sequence length, and
annotated domains (with positions within the primary sequence) are also provided. C) Genomic
organization of the MCD cofactor biosynthetic genes for Ea and Eb (generated from the NCBI
Sequence Viewer). Source data are provided as a Source data file.
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Supplementary Figure 6. Heterologous expression of E. bolteae ucdCFO genes in R.

erythropolis.

A) Map of the E. coli — R. erythropolis pTipQC2-ucdCFO shuttle plasmid generated in
Benchling. B) Genomic organization of the wild-type E. bolteae ucd operon with intergenic
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regions highlighted. Shine-Dalgarno consensus sequences (bold) are denoted between
translational stop and start (underlined) sites for ucdC and ucdF (Intergenic Region |) and for
ucdF and ucdO (Intergenic Region Il). C,D) SDS-PAGE gels (10% bis-tris) stained with colloidal
Coomassie dye of the insoluble (C) and soluble (D) fractions from thiostrepton-induced (1
pug/mL) R. erythropolis harboring pTipQC2 no insert or pTipQC2-ucdCFO plasmids (n = 3
biological replicates). UcdCFO complex proteins are labeled on the right side of each gel image.
E,F) Quantification of extracted ion chromatogram (EIC) peak areas from crude lysates of
thiostrepton-induced R. erythropolis harboring pTipQC2 no insert or pTipQC2-ucdCFO
plasmids (n = 3 biological replicates). Crude lysates were incubated anaerobically with 2 mM
NADH and 357 uM uroC (E) or 357 yM uroMé6 (F) for 72 h before extraction and analysis by
LC-MS. Data are represented as mean + SEM. G) LC-MS extracted ion chromatograms (EIC)
of uroM6 ([M-H]- = 259) and uroM7 ([M-H] = 243) from a representative anaerobic uroC
dehydroxylation assay using crude lysates of R. erythropolis harboring either pTipQC2 (no
insert) or pTipQC2-ucdCFO plasmids. Source data are provided as a Source data file.
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638 Supplementary Figure 7. The AlphaFold2 model of the E. bolteae UcdCFO enzyme
639 complex has a similar quaternary structure to xanthine dehydrogenase superfamily
640 crystal structures.

641  A,B) Structural superposition of AlphaFold2-predicted Eb Ucd proteins (right) onto the X-ray

642 crystal structures of A) PDB 1ZXlI (carbon monoxide dehydrogenase from Oligotropha
643 carboxidovorans OMS) X-ray crystal structure (left) and B) PDB 3UNI (bovine milk xanthine
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dehydrogenase with NADH bound). PDB 1ZXI is colored in shades of green (according to chain
ID), PDB 3UNI is colored in gold (single chain A shown), and the Eb Ucd enzyme complex is
colored according to its per-residue confidence score as indicated in the legend. The various
ligands (cofactors, coenzymes, ions, small molecules) of PDB 1ZX| and PDB 3UNI are included
in the respective Eb Ucd enzyme models. C,D) Cofactors from X-ray crystal structures C) PDB
1ZXI and D) PDB 3UNI modeled into the AlphaFold2 Eb Ucd enzyme complex, showing a
complete electron transport chain from a bound FAD molecule to a molybdopterin cofactor via
two 2Fe-2S clusters. E) Xanthine dehydrogenase active site from PDB 3UNI. Side chains within
8 A of the salicylic acid ligand are colored in gold. Residues important for substrate (purine)
binding and catalysis are labeled with their one letter amino acid code and sequence position.
Position E1261* is catalytically important (acts as a general base) and is conserved in
XDH/xanthine oxidase enzymes %°. F) Eb Ucd enzyme complex active site modeling. Side
chains within 8 A of the salicylic acid ligand from PDB 3UNI are colored on the superposed Eb
Ucd enzyme complex according to their per-residue confidence score as indicated in the
legend. Residues surrounding the predicted active site are labeled with their one letter amino
acid code and sequence position (in the Eb MoO protein). The predicted urolithin binding site
is depicted by the surface (mesh) created by the active site residues. The surface was rendered
using the cavities and pockets only (culled) setting with a cavity detection cutoff of 5 solvent
radii in PyMOL. Source data are provided as a Source data file.
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Supplementary Figure 8. Iron supplementation rescues lag time extension by uroC and

2,2’-bipyridyl.

A,B) Growth curves (optical density (OD) at 620 nm) of uroC-metabolizing Enterocloster spp.
and L. pacaense treated with H20, DMSO (vehicle), or 100 uM of uroC or uroA in mABB
medium (lacking added iron) (A) or mABB+H (B) medium (containing 7.7 yM hemin) (n = 3
biological replicates). Data are represented as mean + SEM. C) Growth curves (optical density
(OD) at 620 nm) of uroC-metabolizing Enterocloster spp. and L. pacaense treated with DMSO
(vehicle), 100 uM of uroC, or 2,2-bipyridyl (biP) in mABB media (lacking added iron)
supplemented with solutions containing no iron (H20), 7.7 uM Fe?* (Fe(I1)SOa4), or 7.7 uM Fe3*
(Fe(Ill) pyrophosphate) (n = 3 biological replicates). Data are represented as means without
error bars for clarity. Source data are provided as a Source data file.
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679 Supplementary Figure 9. Synthesis and characterization of 8,9-di-O-methyl-urolithin C

680 A) Reaction scheme for the synthesis of 8,9-di-O-methy-urolithin C. B) Aligned reversed-phase
681 (C18) HPLC chromatograms (A = 305 nm) of 10 yL injections of the following solutions: MeOH
682  blank, urolithin C 100 pM, 8,9-di-O-methy-urolithin C 100 uM. C,D) Negative ESI-MS spectra
683  of urolithin C (C) and 8,9-di-O-methy-urolithin C (D) following chromatographic separation (B).
684 E) 'H NMR spectrum (600 MHz, (CD3)2S0)) of 8,9-di-O-methy-urolithin C. F) COSY NMR
685 spectrum (600 MHz, (CD3)2S0)) of 8,9-di-O-methy-urolithin C. The grey diagonal line denotes
686 self correlation between protons. The right panel corresponds to the area in the red box.
687  Coupling between protons is shown on the 8,9-di-O-methy-urolithin C using bold lines and bold
688 arrows (for long range coupling).

689
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Supplementary Figure 10. Urolithin C differentially affects the growth of gut bacteria in

vitro.

A,B,C) Growth curves (optical density (OD) at 620 nm) of non-uroC metabolizing Enterocloster
spp. (A), Enterococcus faecium (B) and Gordonibacter spp. (C) treated with DMSO (vehicle),
or 100 uM of uroC or uroA in mMABB medium (n = 3 biological replicates for Enterocloster spp.
and E. faecium, and n = 4 biological replicates for Gordonibacter spp.). Data are represented
as mean + SEM.
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Supplementary Figure 11. Urolithin C-metabolizing species and genes are prevalent and

correlate with ucdO gene abundance in human gut metagenomes.

A) Related to Fig. 6A. Prevalence of at least one ucd operon gene (blue bars) and uroC-
metabolizing species (white bars) in fecal metagenomes across all 86 studies (in reverse
alphabetical order). The number of participants in each study are represented to the right of the
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prevalence plot as a heatmap. Details on the study populations (from the
curatedMetagenomicData R package) can be found in the Source Data file. B) Prevalence of
uroC-metabolizing species in human fecal metagenomes from the curatedMetagenomicData R
package. Data are reported for 86 studies (N=21,030 individuals) and are colored according to
the species. C) Violin plot of the log1o(relative abundance) of uroC-metabolizing species in
human fecal metagenomes. The solid horizontal line corresponds to the median and the dashed
white lines correspond to the first and third quartiles. The percentage of zeroes are denoted
below the plotted distributions. Differences between groups were determined using the Kruskal-
Wallis test on untransformed relative abundance values. Significant differences between
groups are denoted by a different lowercase letter above each plot. D) Correlation between the
ucdO gene abundance in reads per kilobase per million mapped reads (RPKM) and the relative
abundance of each uroC-metabolizing species in fecal metagenomes. Both values are
illustrated on a log1o scale. Spearman rho (p) values are denoted above the scatter plots. All
correlations were significant, P < 0.0001. Source data are provided as a Source data file.
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Supplementary Figure 12. Urolithin C-metabolizing species and the ucd operon are
prevalent in fecal slurries, but only ucd transcription correlates with urolithin C
metabolism.

A) Stacked bar plot of bacterial percent relative abundance (based on V1-V9 16S rRNA gene
sequencing) in DMSO- or uroC-treated fecal slurries from 10 healthy donors (from one
experimental replicate). Bars are colored according to the phylum (bold) and order. B) Heatmap
of the percent relative abundance of uroC-metabolizing Enterocloster spp. in A). C) Alpha
diversity plots between DMSO- and uroC-treated fecal slurries according to Chao1, Shannon,
and Simpson diversity metrics. Lines between data points connect paired biological replicates;
Wilcoxon test; ns, not significant. D,E) Principal coordinate analyses of dissimilarities between
16S rRNA compositions based on the Bray-Curtis and weighted UniFrac distance methods.
Data points are colored according to the treatment used and the metabolism status of the fecal
slurry; PERMANOVA test according to the treatment (D) for all fecal slurries or uroC metabolism
status (E) for uroC-treated slurries. F,G) PCR with ucd-specific primers on gDNA extracted from
an E. bolteae isolate and fecal microbiota communities from 10 healthy donors (from one
experimental replicate). 1% agarose gel of amplicons derived from uroC-metabolizing (F) and
non-metabolizing (G) fecal slurries. Samples are matched to the urolithin metabolism data in
Fig. 6C and 16S rRNA sequencing in A) and B). The no template control (NTC) and E. bolteae
positive control are the same for both gels. H,lI) 1% agarose gel of amplicons from Fig. 6D,E
including the no reverse transcriptase (-RT) in uroC-metabolizing (H) and non-metabolizing (1)
fecal slurries. The NTC is derived from the final lane of the gel in H). Source data are provided
as a Source data file.
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Supplementary Sequence 1. cDNA sequence of E. bolteae ucdCFO transcript, 3605 bp
(band in Fig. 2I)

>Eb_ucd_RT-PCR_band coverage: 4.94e+03x

AAGCACAGCCAGGGTTATGGCAGGCGCAACGGATCTGATTCCGCCAATGAAAGACAAGGTTATATCACCAGAGTATATCATTG
ACCTTAAGAAAATTCCAGGTTTGGATTATCTGGAATACGATGACAGGGAAGGTTTAAAAATAGGGGCGCTGACAACACTGCGT
ACCATAGAGACATCTCCTCTGGTTAAAGAAAAGAATCCGGCAGTGGCTCATGCCGCCAAGGTAGTGGCATCCACACAAATCAG
GACAAAGGGCACCATGGCAGGCAATATCTGCAATGCGTCCCCATCCTGCGATACAGCCCCCAACCTACTGGCTCAGGGCGCTA
AGATATTGGTACAGGGTCCCAACAAGGACCGGGTCATTCAAATCGAAGACTTTTTCCTGGGTGTCAAAAAGACTTCCCTGGAG
CCGGGAGAAATCGTGACAGGCATTGTGATTCCGCCGCTGGCTGAGAATGAGAGGGCTGCATACATAAAACACGCGGTCAGAAA
GGCGATGGACCTGGCCATCATCGGCGTCGCAGTCAAGATTAAGGTGGAAGACGGCGTCTGCACAGACGCCAGGATTGCCCTGG
GCGCGGTTGCGGCCACGCCGGTACGGGCACCCGGGGCGGAGGAAGCCCTGATTGGCAAAGAACTTACCGATGAAGTGATTGTG
AAGGCATCGGAGGAAGCAATGAATTCCTGTCATCCAATCTCTGATATCCGCGCATCGGCCGAATACAGGAAGGATATGATCCG
CGTGTTTACAAAACGTGCCATTAAGCAGGCCATGGAATGCTATAACTAGGAGGGAGACAGGAATGAAACATAGTATAAGTTTA
ATCATCAACGGAGATCCGGTTGATGCTATTGTGAAGGATAACCTGACGCTTCTGGATTTTCTTCGTGACCAGTTGTTTCTGAC
AGGCACGAAAAAGGGGTGTGAGGAAGGGGAGTGTGGCGCCTGTACCGTGATGCTTGACGGTAAGCCGGTTAACTCCTGCTGTA
CCCTGGCCGTGGAGTGCGACGGCCATGAGATCATAACCGTGGAGGGAATTGCCAGGGAGGGGATGCTTCATCCCATTCAGAAG
CAGTTTATAGAGAAGTGGGCCATGCAGTGCGGCTACTGTACTCCGGGTATGATTATGTCCGCCAAAGCTCTTCTGGATGTGAA
TAAACATCCTACGGAACTGGAAATCCGGGAAGCCATTGAGGGCAATCTGTGCCGCTGCACCGGTTATGCAAAGATTGTGGAGG
CAATCCAGGCAGCCGCTGCGCAGATGAACTGGGAGGAGGAAGCAAAGAATGCATAAAGACTGTGACAAACATTATTTTAAAAA
ACCGGAATTTTACCGTCTGACCGGCGAGAACAATTATGTCAGGATTGACGCTGAAGACAAGGTAACAGGACACGGCCAGTATG
TGGGTGACATCATGTTTCCGGATATGCTTACCGGAAAAATGGTCAGAAGCCCTTATGCATCTGCAAAAATCCTGTCCATTGAC
ACCAGCGAGGCAGAGAAGCTTCCAGGTGTAAAGTGCATCCTCACTGCCAGGGACTTTGAGTGGAAGTCCCTGGTGGGAAATGG
AGAATTTGCAGCTGAGTTCGCGGACAAGGAAGTATTGTGTTCTGAGAAGGTGCGCCAGGTTGGTGACGATGTGGCAGCCGTGG
CAGCCGTGGATGAGGAAACCGCCCAGCGGGCCGCGGATCTGATTAAGGTAGAGTACCAGGTGCTTCCGGGGGTGTTTGACCCC
TTTGAGGCAATGGAGGAGAATGCCCCCGAGGTAAACTGGGAGGGCAAAGGCATACACAATATCGGCATGCAGTCCGTGATGAA
GGCGGGCACGGATATTGATGAGGAATTTGACCGCGCATCCTATGTGCAGCACAGGGATTACAAGACCCACCGTATGGTACATG
CGGCCATGGAGCCCCACGGTGCGGTGGCTACCTACAGGAATGGGACCTACACCATCTGGATGTCCACCCAGATGTCCTTTGTG
GACCAGTTCTGGTATGCCCGCTGCCTTGGCGTTGGAGAGAACCAGGTGCGGGTAATCAAGCCTCTTGTGGGCGGCGGTTTCGG
CGGCAAGCTGGATTCCTATTCCTTTGGCCTTTGCGCTGCCAAGATGGCGGAGATGACCGGACGCCCGGTACGCATGATTCTGT
CCCGCGAAGAAGTATTCCAGACCACGCGCAACCGCCACCCCATTTACATGCATATTGACACTGCCTTTGGGACAGACGGTAAG
CTGCTGGCAAAGAAATGCTACCATGTGCTGGACGGCGGGCCTTACGGCGGGTCCGGTGTTGCGGCCTGCGCCCAGTCCACATT
GTGGGCCAACTTCCCTTACAAGATGAATTCCGTGGATTTCCTGGCAAGGCGTGTGTATACCAATAACCCTTCTGCAGGAGCCA
TGAGAGGATATACGGCATGCCAGGTGCATTTTGCCCATGACCTGAACATGCAGTTCGCGGCTGACCAGATGGGCATTGACCCG
GTTGAGTTCCGCAAGATAAGCGCGGCAGACCCCGGATACGTGGCTCCGGCCGGACTGGCAATCACCAGCTGCGCATACAAGGA
GACACTGGATACGGCTGCAAAGGAAATTGGCTGGTATGAGAAGAAGGATAAGCTGAAAAAGGGAGAGGGCATTGGTTTTGCGG
GCACCGGCTTTGTATCGGGCACCGGATTCGCGGTGCTGGAAGCGCCCAACCAGAGCTCTGCGTGCGTGACCCTGCGCATGAAC
AAGCGGGGCATGGCCACCCTGTACATCGGCTCCCACGACATAGGACAGGGTTCCGATACGGTTATGACGGCCATTGTGGCCGA
GGAACTGGGGCTTCCCATGGATATGGTCAAGACCTTTATGTCCGACACCTTCCTGACGCCCTGGGACTCCGGCTCTTACGGCA
GCCGTGTTACCTTCCTGGCCGGCAATGCGGCCCGCCGCGCTGCCGTGGATGCAAAACGCCAGCTGTTTGAGGTCATTGCGCCT
ATGTGGGGGGTGATGCCGGAGACATTAGAGTGTCTGGACGGAAAGGTAATCAGCAAGGAGAAGGCAGAGTATCAGATGTCCAT
TGGAGACGCCATGTTCAAGTATATGACGGTCAAGGGCGGCGATGAACTGATTGGCGTGGGATCCTATTACCACCGTACCGACA
ATTCACAGTATAACGGCAACAATACCACCAACTACGCGCCTGCATACAGCTTCTCCACCGGAGCAGCCCATCTGACTGTGGAC
GAGGAGACCGGCGTCCTGGATATTGATGAATTTGTATTTGCCCATGACTGCGGCCGCGCACTGAATAAGAGGGCCGTGGAAGG
CCAGCTGGAGGGATCCATCGGCATGGGCCTGGGCTATGCTGTCTATGAGCACAATGTAACCAGGGAAGGAAAGATTCTCAATC
CCAACTTCCGCGATTACCGGCTGCCCACTGCCCTTGATATGCCGAAGATGCGCACCTTTTACGACTTTACACCGGACGAGGAA
GGACCTCTGGGCGCAAAGGAAGCTGGCGAGGGCTCCGCAGCACCTGTGGCGCCTGCCATTGCCAATGCGGTCAACATGGCAAC
CGGCGTGTACTTCACAGAGCTGCCTCTGGACCCGGA
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Supplementary Sequence 2. pTipQC2-ucdCFO

>pTipQC2-ucdCFO coverage: 717x

AAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCA
GAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATAC
CTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTT
ACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGA
GATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTC
GGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACT
TGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGG
CCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGA
GCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACC
GCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACTAGAGTCCCGCTGAGGCGGCGTAGCAGGTCAGCCGCC
CCAGCGGTGGTCACCAACCGGGGTGGAACGGCGCCGGTATCGGGTGTGTCCGTGGCGCTCATTCCAACCTCCGTGTGTTTGTG
CAGGTTTCGCGTGTTGCAGTCCCTCGCACCGGCACCCGCAGCGAGGGGCTCACGGGTGCCGGTGGGTCGACTAGTTCAGTGAT
GGTGATGGTGATGctcgagCTGCCTTTATTTTGAATTCCTGTCATCCTTCATGCCGTGCAGCGCTCTCCAGATATGCTCCGGG
TCCAGAGGCAGCTCTGTGAAGTACACGCCGGTTGCCATGTTGACCGCATTGGCAATGGCAGGCGCCACAGGTGCTGCGGAGCC
CTCGCCAGCTTCCTTTGCGCCCAGAGGTCCTTCCTCGTCCGGTGTAAAGTCGTAAAAGGTGCGCATCTTCGGCATATCAAGGG
CAGTGGGCAGCCGGTAATCGCGGAAGTTGGGATTGAGAATCTTTCCTTCCCTGGTTACATTGTGCTCATAGACAGCATAGCCC
AGGCCCATGCCGATGGATCCCTCCAGCTGGCCTTCCACGGCCCTCTTATTCAGTGCGCGGCCGCAGTCATGGGCAAATACAAA
TTCATCAATATCCAGGACGCCGGTCTCCTCGTCCACAGTCAGATGGGCTGCTCCGGTGGAGAAGCTGTATGCAGGCGCGTAGT
TGGTGGTATTGTTGCCGTTATACTGTGAATTGTCGGTACGGTGGTAATAGGATCCCACGCCAATCAGTTCATCGCCGCCCTTG
ACCGTCATATACTTGAACATGGCGTCTCCAATGGACATCTGATACTCTGCCTTCTCCTTGCTGATTACCTTTCCGTCCAGACA
CTCTAATGTCTCCGGCATCACCCCCCACATAGGCGCAATGACCTCAAACAGCTGGCGTTTTGCATCCACGGCAGCGCGGCGGG
CCGCATTGCCGGCCAGGAAGGTAACACGGCTGCCGTAAGAGCCGGAGTCCCAGGGCGTCAGGAAGGTGTCGGACATAAAGGTC
TTGACCATATCCATGGGAAGCCCCAGTTCCTCGGCCACAATGGCCGTCATAACCGTATCGGAACCCTGTCCTATGTCGTGGGA
GCCGATGTACAGGGTGGCCATGCCCCGCTTGTTCATGCGCAGGGTCACGCACGCAGAGCTCTGGTTGGGCGCTTCCAGCACCG
CGAATCCGGTGCCCGATACAAAGCCGGTGCCCGCAAAACCAATGCCCTCTCCCTTTTTCAGCTTATCCTTCTTCTCATACCAG
CCAATTTCCTTTGCAGCCGTATCCAGTGTCTCCTTGTATGCGCAGCTGGTGATTGCCAGTCCGGCCGGAGCCACGTATCCGGG
GTCTGCCGCGCTTATCTTGCGGAACTCAACCGGGTCAATGCCCATCTGGTCAGCCGCGAACTGCATGTTCAGGTCATGGGCAA
AATGCACCTGGCATGCCGTATATCCTCTCATGGCTCCTGCAGAAGGGTTATTGGTATACACACGCCTTGCCAGGAAATCCACG
GAATTCATCTTGTAAGGGAAGTTGGCCCACAATGTGGACTGGGCGCAGGCCGCAACACCGGACCCGCCGTAAGGCCCGCCGTC
CAGCACATGGTAGCATTTCTTTGCCAGCAGCTTACCGTCTGTCCCAAAGGCAGTGTCAATATGCATGTAAATGGGGTGGCGGT
TGCGCGTGGTCTGGAATACTTCTTCGCGGGACAGAATCATGCGTACCGGGCGTCCGGTCATCTCCGCCATCTTGGCAGCGCAA
AGGCCAAAGGAATAGGAATCCAGCTTGCCGCCGAAACCGCCGCCCACAAGAGGCTTGATTACCCGCACCTGGTTCTCTCCAAC
GCCAAGGCAGCGGGCATACCAGAACTGGTCCACAAAGGACATCTGGGTGGACATCCAGATGGTGTAGGTCCCATTCCTGTAGG
TAGCCACCGCACCGTGGGGCTCCATGGCCGCATGTACCATACGGTGGGTCTTGTAATCCCTGTGCTGCACATAGGATGCGCGG
TCAAATTCCTCATCAATATCCGTGCCCGCCTTCATCACGGACTGCATGCCGATATTGTGTATGCCTTTGCCCTCCCAGTTTAC
CTCGGGGGCATTCTCCTCCATTGCCTCAAAGGGGTCAAACACCCCCGGAAGCACCTGGTACTCTACCTTAATCAGATCCGCGG
CCCGCTGGGCGGTTTCCTCATCCACGGCTGCCACGGCTGCCACATCGTCACCAACCTGGCGCACCTTCTCAGAACACAATACT
TCCTTGTCCGCGAACTCAGCTGCAAATTCTCCATTTCCCACCAGGGACTTCCACTCAAAGTCCCTGGCAGTGAGGATGCACTT
TACACCTGGAAGCTTCTCTGCCTCGCTGGTGTCAATGGACAGGATTTTTGCAGATGCATAAGGGCTTCTGACCATTTTTCCGG
TAAGCATATCCGGAAACATGATGTCACCCACATACTGGCCGTGTCCTGTTACCTTGTCTTCAGCGTCAATCCTGACATAATTG
TTCTCGCCGGTCAGACGGTAAAATTCCGGTTTTTTAAAATAATGTTTGTCACAGTCTTTATGCATTCTTTGCTTCCTCCTCCC
AGTTCATCTGCGCAGCGGCTGCCTGGATTGCCTCCACAATCTTTGCATAACCGGTGCAGCGGCACAGATTGCCCTCAATGGCT
TCCCGGATTTCCAGTTCCGTAGGATGTTTATTCACATCCAGAAGAGCTTTGGCGGACATAATCATACCCGGAGTACAGTAGCC
GCACTGCATGGCCCACTTCTCTATAAACTGCTTCTGAATGGGATGAAGCATCCCCTCCCTGGCAATTCCCTCCACGGTTATGA
TCTCATGGCCGTCGCACTCCACGGCCAGGGTACAGCAGGAGTTAACCGGCTTACCGTCAAGCATCACGGTACAGGCGCCACAC
TCCCCTTCCTCACACCCCTTTTTCGTGCCTGTCAGAAACAACTGGTCACGAAGAAAATCCAGAAGCGTCAGGTTATCCTTCAC
AATAGCATCAACCGGATCTCCGTTGATGATTAAACTTATACTATGTTTCATTCCTGTCTCCCTCCTAGTTATAGCATTCCATG
GCCTGCTTAATGGCACGTTTTGTAAACACGCGGATCATATCCTTCCTGTATTCGGCCGATGCGCGGATATCAGAGATTGGATG
ACAGGAATTCATTGCTTCCTCCGATGCCTTCACAATCACTTCATCGGTAAGTTCTTTGCCAATCAGGGCTTCCTCCGCCCCGG
GTGCCCGTACCGGCGTGGCCGCAACCGCGCCCAGGGCAATCCTGGCGTCTGTGCAGACGCCGTCTTCCACCTTAATCTTGACT
GCGACGCCGATGATGGCCAGGTCCATCGCCTTTCTGACCGCGTGTTTTATGTATGCAGCCCTCTCATTCTCAGCCAGCGGCGG
AATCACAATGCCTGTCACGATTTCTCCCGGCTCCAGGGAAGTCTTTTTGACACCCAGGAAAAAGTCTTCGATTTGAATGACCC
GGTCCTTGTTGGGACCCTGTACCAATATCTTAGCGCCCTGAGCCAGTAGGTTGGGGGCTGTATCGCAGGATGGGGACGCATTG
CAGATATTGCCTGCCATGGTGCCCTTTGTCCTGATTTGTGTGGATGCCACTACCTTGGCGGCATGAGCCACTGCCGGATTCTT
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TTCTTTAACCAGAGGAGATGTCTCTATGGTACGCAGTGTTGTCAGCGCCCCTATTTTTAAACCTTCCCTGTCATCGTATTCCA
GATAATCCAAACCTGGAATTTTCTTAAGGTCAATGATATACTCTGGTGATATAACCTTGTCTTTCATTGGCGGAATCAGATCC
GTTGCGCCTGCCATAACCCTGGCTGTGCTTCCAAGCTCAAGGAACAGATTGCACGCCTCCCCGATGGTCTTAGGAGCAAGATA
CTCGAATTGAGGTAATACCATcatatgTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGACGCCGTCCACGCTGCCT
CCTCACGTGACGTGAGGTGCAAGCCCGGACGTTCCGCGTGCCACGCCGTGAGCCGCCGCGTGCCGTCGGCTCCCTCAGCCCGG
GCGGCCGTGGGAGCCCGCCTCGATATGTACACCCGAGAAGCTCCCAGCGTCCTCCTGGGCCGCGATACTCGACCACCACGCAC
GCACACCGCACTAACGATTCGGCCGGCGCTCGATTCGGCCGGCGCTCGATTCGGCCGGCGCTCGATTCGGCCGGCGCTCGATT
CGGCCGGCGCTCGATTCGGCCGAGCAGAAGAGTGAACAACCACCGACCACGCTTCCGCTCTGCGCGCCGTACCCGACCTACCT
CCCGCAGCTCGAAGCAGCTCCCGGGAGTACCGCCGTACTCACCCGCCTGTGCTCACCATCCACCGACGCAAAGCCCAACCCGA
GCACACCTCTTGCACCAAGGTGCCGACCGTGGCTTTCCGCTCGCAGGGTTCCAGAAGAAATCGAACGATCCAGCGCGGCAAGG
TTCAAAAAGCAGGGGTTGGTGGGGAGGAGGTTTTGGGGGGTGTCGCCGGGATACCTGATATGGCTTTGTTTTGCGTAGTCGAA
TAATTTTCCATATAGCCTCGGCGCGTCGGACTCGAATAGTTGATGTGGGCGGGCACAGTTGCCCCATGAAATCCGCAACGGGG
GGCGTGCTGAGCGATCGGCAATGGGCGGATGCGGTGTTGCTTCCGCACCGGCCGTTCGCGACGAACAACCTCCAACGAGGTCA
GTACCGGATGAGCCGCGACGACGCATTGGCAATGCGGTACGTCGAGCATTCACCGCACGCGTTGCTCGGATCTATCGTCATCG
ACTGCGATCACGTTGACGCCGCGATGCGCGCATTCGAGCAACCATCCGACCATCCGGCGCCGAACTGGGTCGCACAATCGCCG
TCCGGCCGCGCACACATCGGATGGTGGCTCGGCCCCAACCACGTGTGCCGCACCGACAGCGCCCGACTGACGCCACTGCGCTA
CGCCCACCGCATCGAAACCGGCCTCAAGATCAGCGTCGGCGGCGATTTCGCGTATGGCGGGCAACTGACCAAAAACCCGATTC
ACCCCGATTGGGAGACGATCTACGGCCCGGCCACCCCGTACACATTGCGGCAGCTGGCCACCATCCACACACCCCGGCAGATG
CCGCGTCGGCCCGATCGGGCCGTGGGCCTGGGCCGCAACGTCACCATGTTCGACGCCACCCGGCGATGGGCATACCCGCAGTG
GTGGCAACACCGAAACGGAACCGGCCGCGACTGGGACCATCTCGTCCTGCAGCACTGCCACGCCGTCAACACCGAGTTCACGA
CACCACTGCCGTTCACCGAAGTACGCGCCACCGCGCAATCCATCTCCAAATGGATCTGGCGCAATTTCACCGAAGAACAGTAC
CGAGCCCGACAAGCGCATCTCGGTCAAAAAGGCGGCAAGGCAACGACACTCGCCAAACAAGAAGCCGTCCGAAACAATGCAAG
AAAGTACGACGAACATACGATGCGAGAGGCGATTATCTGATGGGCGGAGCCAAAAATCCGGTGCGCCGAAAGATGACGGCAGC
AGCAGCAGCCGAAAAATTCGGTGCCTCCACTCGCACAATCCAACGCTTGTTTGCTGAGCCGCGTGACGATTACCTCGGCCGTG
CGAAAGCTCGCCGTGACAAAGCTGTCGAGCTGCGGAAGCAGGGGTTGAAGTACCGGGAAATCGCCGAAGCGATGGAACTCTCG
ACCGGGATCGTCGGCCGATTACTGCACGACGCCCGCAGGCACGGCGAGATTTCAGCGGAGGATCTGTCGGCGTAACCAAGTCA
GCGGGTTGTCGGGTTCCGGCCGGCGCTCGGCACTCGGACCGGCCGGCGGATGGTGTTCTGCCTCTGGCGCAGCGTCAGCTACC
GCCGAAGGCCTGTCATCGACCGGCTTCGACTGAAGTATGAGCAACGTCACAGCCTGTGATTGGATGATCCGCTCACGCTCGAC
CGCTACCTGTTCAGCTGCCGCCCGCTGGGCATGAGCAACGGCCAACTCTCGTTCAAGAGCTCGACCGCGCGGGTCCCGGALCGG
GGAAGAGCGGGGAGCTTTGCCAGAGAGCGACGACTTCCCCTTGCGTTGGTGATTGCCGGTCAGGGCAGCCATCCGCCATCGTC
GCGTAGGGTGTCACACCCCAGGAATCGCGTCACTGAACACAGCAGCCGGTAGGACGACCATGACTGAGTTGGACACCATCGCA
AATCCGTCCGATCCCGCGGTGCAGCGGATCATCGATGTCACCAAGCCGTCACGATCCAACATAAAGACAACGTTGATCGAGGA
CGTCGAGCCCCTCATGCACAGCATCGCGGCCGGGGTGGAGTTCATCGAGGTCTACGGCAGCGACAGCAGTCCTTTTCCATCTG
AGTTGCTGGATCTGTGCGGGCGGCAGAACATACCGGTCCGCCTCATCGACTCCTCGATCGTCAACCAGTTGTTCAAGGGGGAG
CGGAAGGCCAAGACATTCGGCATCGCCCGCGTCCCTCGCCCGGCCAGGTTCGGCGATATCGCGAGCCGGCGTGGGGACGTCGT
CGTTCTCGACGGGGTGAAGATCGTCGGGAACATCGGCGCGATAGTACGCACGTCGCTCGCGCTCGGAGCGTCGGGGATCATCC
TGGTGGACAGTGACATCACCAGCATCGCGGACCGGCGTCTCCAAAGGGCCAGCCGAGGTTACGTCTTCTCCCTTCCCGTCGTT
CTCTCCGGTCGCGAGGAGGCCATCGCCTTCATTCGGGACAGCGGTATGCAGCTGATGACGCTCAAGGCGGATGGCGACATTTC
CGTGAAGGAACTCGGGGACAATCCGGATCGGCTGGCCTTGCTGTTCGGCAGCGAAAAGGGTGGGCCTTCCGACCTGTTCGAGG
AGGCGTCTTCCGCCTCGGTTTCCATCCCCATGATGAGCCAGACCGAGTCTCTCAACGTTTCCGTTTCCCTCGGAATCGCGCTG
CACGAGAGGATCGACAGGAATCTCGCGGCCAACCGATAAGCGCCTCTGTTCCTCGGACGCTCGGTTCCTCGACCTCGATTCGT
CAGTGATGATCACCTCACACGGCAGCGATCACCACTGACATATCGAGGTCAACGGTCGTGGTCCGGGCGGGCACTCCTCGAAG
GCGCGGCCGACGCCCTTGAACGACTCGATGACTCTAGACGCATCCGAAACCTCCACCCCACTCACCTAGTCCGACATCCGTAC
CTTGGAAACCGACCTGTATTGGCATTTCAGTTGGACATCGACCAGTGGCGTTGCTAGGTTCAAGACCATGTCCAGCCCGAAGG
CGTCCAGACTCTAGCCACCGGAGGTAGTCCGGTGGCCACATCCCGTCGCGCCCGAACGTCACGCTCTTGTGTGGCCTTCCCTT
GTTGTTTGCGATCAGTGGCACACCTCTACCGTCTGAATTTCGAGTCTGGCCTCGGCTGCGCACATCTCGCACTGTGACGCTGT
CAGGTCACCCGCTTCGCGGCTACCAGTTCCTTTCATCGAATCGAGCTTCCGGTGCCGCCGCGCAGCCTCCCTGACCATCCTCA
GATTTTATGGAGTCTCGCAGTGCCTTTCGCTATCTACGTCCTCGGGCTTGCTGTCTTCGCCCAGGGCACATCCGAGTTCATGT
TGTCCGGACTCATACCGGACATGGCCCGTGACCTCGGGGTTTCGGTCCCCGCCGCCGGACTCCTCACCTCCGCCTTCGCGGTC
GGGATGATCATCGGCGCTCCGTTGATGGCTATCGCCAGCATGCGGTGGCCCCGGCGACGCGCCCTTCTGACATTCCTCATCAC
GTTCATGCTGGTCCACGTCATCGGCGCGCTCACCAGCAGCTTCGAGGTCTTGCTGGTCACACGCATCGTGGGAGCCCTCGCCA
ATGCCGGATTCTTGGCAGTGGCCCTGGGGGCGGCGATGGCGATGGTGCCCGCCGACATGAAAGGGCGCGCCACGTCCGTCCTC
CTCGGCGGTGTCACGATCGCATGTGTAGCCGGTGTTCCCGGGGGCGCCTTCCTGGGTGAAATGTGGGGCTGGCGTGCAGCGTT
CTGGGCTGTCGTCGTCATCTCCGCCCCTGCAGTGGTGGCGATTATGTTCGCCACCCCGGCCGAGCCGCTTGCAGAGTCCACAC
CGAATGCCAAGCGTGAACTGTCCTCACTGCGCTCACGCAAGCTCCAGCTCATGCTTGTCCTCGGGGCGCTGATCAACGGCGCA
ACGTTCTGTTCGTTCACGTACATGGCGCCCACGCTCACCGACATCTCCGGTTTCGACTCCCGTTGGATTCCGTTGCTGCTGGG
GCTGTTCGGGCTCGGATCGTTCATCGGTGTCAGCGTCGGAGGCAGGCTCGCCGACACCCGGCCGTTCCAACTGCTCGCTGTCG
GGTCCGCAGCACTGTTGACGGGATGGATCGTCTTCGCTCTCACGGCATCCCACCCCGCGGTGACATTGGTGATGCTGTTCGTG
CAGGGCGCTTTGTCCTTCGCGGTCGGCTCGACTTTGATCTCCCAGGTGCTCTACGCCGCCGACGCGGCACCGACCTTGGGTGG
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ATCGTTCGCGACGGCCGCGTTCAACGTCGGTGCTGCACTGGGACCGGCGCTCGGCGGGTTGGCGATCGGCATGGGTCTGAGCT
ACCGCGCCCCGCTCTGGACGAGCGCCGCGCTGGTGACACTCGCGATCGTCATCGGCGCAGCCACCTTGTCTCTGTGGCGGCGA
CCAGCGTCTGTCCACGAATCTGTCCCCGCCTGACCAGAAACCAGGATCTGTGAGTGTGGTGACTGATCTGTGCACGCTCAGCA
GTCACCGCGCGCTCGCGTCGTACCGAGGGCCAGCGCCAACAGGTGTGTGGAGCTCTGCCCCTGCCTCTTTCACGCGAACTCAC
TGTTCAGTGCGGCGATACGTGCTCGGTGAGTTCCACTACAGCGACCATGACTAGAATTGATCTCCTCGACCGCCAATTGGGCA
TCTGAGAATCATCTGCGTTTCTCGCACGCAACGTACTTGCAACGTTGCAACTCCTAGTGTTGTGAATCACACCCCACCGGGGG
GTGGGATTGCAGTCACCGATTTGGTGGGTGCGCCCAGGAAGATCACGTTTACATAGGAGCTTGCAATGAGCTACTCCGTGGGA
CAGGTGGCCGGCTTCGCCGGAGTGACGGTGCGCACGCTGCACCACTACGACGACATCGGCCTGCTCGTACCGAGCGAGCGCAG
CCACGCGGGCCACCGGCGCTACAGCGACGCCGACCTCGACCGGCTGCAGCAGATCCTGTTCTACCGGGAGCTGGGCTTCCCGE
TCGACGAGGTCGCCGCCCTGCTCGACGACCCGGCCGCGGACCCGCGCGCGCACCTGCGCCGCCAGCACGAGCTGCTGTCCGCC
CGGATCGGGAAACTGCAGAAGATGGCGGCGGCCGTGGAGCAGGCGATGGAGGCACGCAGCATGGGAATCAACCTCACCCCGGA
GGAGAAGTTCGAGGTCTTCGGCGACTTCGACCCCGACCAGTACGAGGAGGAGGTCCGGGAACGCTGGGGGAACACCGACGLCT
ACCGCCAGTCCAAGGAGAAGACCGCCTCGTACACCAAGGAGGACTGGCAGCGCATCCAGGACGAGGCCGACGAGCTCACCCGG
CGCTTCGTCGCCCTGATGGACGCGGGTGAGCCCGCCGACTCCGAGGGGGCGATGGACGCCGCCGAGGACCACCGGCAGGGCAT
CGCCCGCAACCACTACGACTGCGGGTACGAGATGCACACCTGCCTGGGCGAGATGTACGTGTCCGACGAACGTTTCACGCGAA
ACATCGACGCCGCCAAGCCGGGCCTCGCCGCCTACATGCGCGACGCGATCCTCGCCAACGCCGTCCGGCACACCCCCTGAGCG
GTGGTCGTGGCCCGGGTCTCCCGCCCGGTCTCACCCCACGGCTCACTCCCGGGCCACGACCACCGCCGTCCCGTACGCGCACA
CCTCGGTGCCCACGTCCGCCGCCTCCGTCACGTCGAAACGGAAGATCCCCGGGTACCGAGCTCGTCAGGTGGCACTTTTCGGG
GAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAA
ATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTG
CC