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 2 

Abstract 13 

The human gut virome is predominantly made up of bacteriophages (phages), viruses that infect 14 

bacteria. Metagenomic studies have revealed that phages in the gut are highly individual specific 15 

and dynamic. These features make it challenging to perform meaningful cross-study comparisons. 16 

While several taxonomy frameworks exist to group phages and improve these comparisons, these 17 

strategies provide little insight into the potential effects phages have on their bacterial hosts. Here, 18 

we propose the use of predicted phage host families (PHFs) as a functionally relevant, higher rank 19 

unit of phage taxonomy to improve these cross-study analyses. We first show that bioinformatic 20 

predictions of phage hosts are accurate at the host family level by measuring their concordance to 21 

Hi-C sequencing-based predictions in human and mouse fecal samples. Next, using phage host 22 

family predictions, we determined that PHFs reduce intra- and interindividual ecological distances 23 

compared to viral contigs in a previously published cohort of 10 healthy individuals, while 24 

simultaneously improving longitudinal virome stability. Lastly, by reanalyzing a previously 25 

published metagenomics dataset with > 1,000 samples, we determined that PHFs are prevalent 26 

across individuals and can aid in the detection of inflammatory bowel disease-specific virome 27 

signatures. Overall, our analyses support the use of predicted phage hosts in reducing between-28 

sample distances and providing a biologically relevant framework for making between-sample 29 

virome comparisons. 30 
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 3 

Introduction 32 

The human gut virome, the collection of viruses in the human gastrointestinal tract, is dominated 33 

by bacteria-infecting bacteriophages (phages). This community is highly diverse and individual-34 

specific at the nucleotide level (1–5). This vast diversity makes it challenging to perform cross-35 

individual or cross-cohort comparisons, as it is rare for all individuals in a cohort group to share a 36 

single viral OTU (vOTU). Most recently, a longitudinal analysis of 59 individuals further 37 

demonstrated that the individuality of the gut virome confounded disease signal detection in the 38 

context of inflammatory bowel diseases (IBDs), in part due to intraindividual fluctuations of 39 

viruses over time (6). 40 

Viral clusters, such as those generated by vConTACT 2 (7), have been proposed as a potential 41 

solution to this, by grouping together viruses based on their shared protein content. While this 42 

approach is useful for complete genome sequences, it may not always be reliable in the context of 43 

virome datasets. Indeed, current short-read virome studies often generate several contigs for a 44 

single viral genome, raising the risk that each contig from a given virus would be placed into a 45 

different viral cluster, confounding ecological conclusions (7). 46 

An important limitation of previous virome analyses was the inability to confidently link 47 

uncultured phages with their hosts. Recent experimental and bioinformatic advances aim to 48 

address this issue. For instance, proximity ligation sequencing is being used to assign phages to 49 

their hosts in situ. With this approach, phage DNA inside of host cells at the time of sampling is 50 

covalently crosslinked to the bacterial host DNA, leading to generation of chimeric reads during 51 

the sequencing process (8, 9). On the computational side, tools such as iPHoP enable the high-52 

throughput prediction of hosts using phage sequence data alone (10). Using a combination of 53 

existing tools and machine learning models, iPHoP can consistently predict hosts down to the 54 
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genus level. These two approaches, proximity ligation and iPHoP, have yet to be formally 55 

compared with each other for assigning hosts to gut virome-derived sequences. 56 

Here, we propose using predicted phage host range to allow for ecologically relevant comparisons 57 

of viromes across individuals, regardless of nucleotide-level diversity. These comparisons could 58 

provide broad insight on ecosystem function, as phages have the ability to alter bacterial 59 

abundances and metabolism (11, 12). We introduce the term Phage Host Family (PHF) as a term 60 

to describe the predicted bacterial host of a phage sequence, at the family level. This family-level 61 

cut-off was determined based on comparisons of predicted phage host range from iPHoP with 62 

experimental assignments via proximity ligation sequencing of human and mouse fecal samples, 63 

where high concordance was seen down to the family, but not genus level. Using this metric, we 64 

then re-evaluate two previously published large datasets. First, we apply PHF analysis to viromes 65 

from a cohort of 10 healthy individuals (1), sampled longitudinally for approximately 1 year, and 66 

conclude that incorporating PHFs reduced interindividual variation, while also increasing within-67 

individual virome stability over time. Second, we analyze the phageome of a large cohort of 68 

individuals with IBDs (13), where we determine that aggregating vOTUs using PHFs allows for 69 

the detection of greater disease-specific differences in the virome, in addition to reducing 70 

interindividual variability. We propose that the use of PHFs as an ecologically informed unit of 71 

phage taxonomy is useful in allowing for cross-sample comparisons in gut virome studies. 72 

  73 
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 5 

Methods 74 

Preparing fecal samples for proximity ligation sequencing 75 

Human fecal samples were collected with the approval of protocol A04-M27-15B from the McGill 76 

University Institutional Review Board. Participants provided informed written consent for the 77 

utilization of their samples. Fresh fecal samples were collected, aliquoted in an anaerobic chamber, 78 

and kept at -70 °C until processing. 79 

Adult female germ-free C57BL/6 mice were maintained in Tecniplast IsoCages at McGill 80 

University. Mice had unlimited access to irradiated diet (Research Diets, New Brunswick, NJ) and 81 

autoclaved water. Germ-free mice were humanized by oral gavage of 200 uL of resuspended 82 

human donor feces. Mouse fecal samples were collected with the approval of McGill University 83 

animal use protocol MCGL-7999. 84 

A total of 10 mouse fecal samples (from 6 mice), and 2 human fecal samples, were collected for 85 

proximity ligation and bulk metagenome sequencing. Fresh fecal samples were collected and 86 

stored at -70 °C until processing. All mice had unlimited access to standard chow and water. Fecal 87 

samples were resuspended in 1 mL PBS (0.02 um filter-sterilized). After an initial centrifugation 88 

at 1,000xg for 1 minute to pellet large debris, the bacterial cell-containing supernatant was 89 

centrifuged again at 10,000xg for 10 minutes. Pelleted bacterial cells were resuspended in 1 mL 90 

of a PBS-formaldehyde solution (1% formaldehyde) and incubated at room temperature for 20 91 

minutes to cross-link DNA. Glycine was added in excess to quench unused formaldehyde and 92 

incubated for 15 minutes at room temperature. The fixed bacterial cells were pelleted (10,000xg 93 

for 10 minutes) and washed twice with PBS. The final resuspended bacterial pellet was transferred 94 

to a BeadBug tube with 0.1mm silica glass beads (Benchmark Scientific, Sayreville, United States), 95 

and vortexed at maximum speed for 5 minutes. The sample was transferred to a DNA LoBind tube 96 
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and sent to Phase Genomics (Seattle, United States) for library preparation and sequencing using 97 

their ProxiMeta kit and analysed using the corresponding bioinformatic pipeline (14). In addition, 98 

a bulk metagenome was sequenced for each sample: immediately after resuspending the original 99 

fecal sample in PBS, 250 uL of sample was used for DNA extraction using the QIAGEN 100 

PowerFecal Pro DNA kit (QIAGEN, Hilden, Germany) following the manufacturer’s instructions. 101 

All libraries (proximity ligation and bulk metagenome) were sequenced using the Illumina 102 

NovaSeq platform with 2x 150bp reads. 103 

 104 

Comparing host predictions between iPHoP and proximity-ligation sequencing 105 

Viral contigs identified by the ProxiMeta pipeline were used as input for iPHoP (v. 1.3.3) (10) to 106 

computationally predict hosts, the output was imported into R (v. 4.2.2) for analysis. The 107 

proximity-ligation linkage data was imported into R and filtered to keep only viral contigs who 108 

also had hosts predicted with iPHoP. These two datasets were then compared for concordance at 109 

the following taxonomic ranks: phylum, class, order, family, and genus. Concordance was 110 

calculated at each taxonomic rank using three distinct approaches to account for phages which 111 

have multiple assigned/predicted hosts: (1) consider the pairing concordant if the most confident 112 

iPHoP prediction matches the top Hi-C hit (most stringent); (2) consider the pairing concordant if 113 

the most confident iPHoP prediction matches any of the Hi-C hits; and (3) consider the pairing 114 

concordant if any of the iPHoP predictions match any of the Hi-C hits (least stringent). The percent 115 

concordance was calculated as the number of viral contigs with concordant hosts, divided by the 116 

total number of viral contigs, multiplied by 100%. 117 

 118 

 119 
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Re-analysis of Shkoporov et al. dataset 120 

The published phyloseq object (1) was downloaded and imported into R (v. 4.2.2) using phyloseq 121 

(v. 1.42) (15). Published virome contigs were also downloaded and filtered to keep those > 1 kb 122 

using seqkit (v. 2.5.1), resulting in 57,721 contigs. iPHoP (v. 1.3.3) (10) was used to predict the 123 

bacterial hosts of these contigs, and the output was imported into R for analysis. The GTDB tree 124 

used by iPHoP (bac120_r202.tree) was also imported into R using phyloseq’s read_tree command 125 

and combined with the downloaded phyloseq object. Viral contig relative abundance was 126 

calculated and added to the phyloseq object, replacing the existing otu_table object. Predicted host 127 

information was added to the phyloseq object as a tax_table object. In cases where a viral contig 128 

had more than 1 predicted host by iPHoP, the most confident host prediction was selected. Taxa 129 

bar plots were generated using microshades (v. 1.10) (16). Samples with less than 30% of the 130 

community consisting of contigs with unknown hosts were retained for subsequent analysis. 131 

Phyloseq’s tax_glom function was used to agglomerate viral contigs that have the same predicted 132 

host at the family level. Vegan (v. 2.6-6.1) (17) was used to calculate distances between samples 133 

using the bray, wunifrac, and unifrac metrics. Distances were evaluated by comparison type, either 134 

inter- or intraindividual sample comparisons, and the Friedman test with post-hoc Wilcoxon 135 

signed-rank test (using Bonferroni correction for multiple comparisons) were used test for 136 

significance. 137 

We define virome stability as the similarity between two sequential samples and it is calculated as 138 

follows: stability = (1 – distance from previous sample). We calculated virome stability using 139 

distances between consecutively collected samples from the same individual using Bray-Curtis 140 

distances at the contig and PHF levels and tested for significance using the Wilcoxon signed-rank 141 

test. 142 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2024. ; https://doi.org/10.1101/2024.10.07.616719doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.07.616719
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

Re-analysis of the HMP2 dataset 143 

In the human IBD cohort, originally analyzed by Lloyd-Price et al., bulk metagenome reads were 144 

obtained from 1,595 samples belonging to 130 individuals (27 non-IBD, 65 CD, and 38 UC) 145 

sampled longitudinally over one year (13). Data was downloaded from: https://ibdmdb.org/results. 146 

Paired-end sequencing reads (101 bp) were generated using Illumina HiSeq 2000 or 2500. Raw 147 

reads were trimmed based on sequence quality using Trimmomatic (v 0.33) (18). Quality-148 

controlled sequences that aligned to human and mouse genomes were removed by Bowtie2 (v. 149 

2.2) (19). These steps were performed using the kneaddata workflow (20). Quality-controlled reads 150 

were then grouped by individual and co-assembled into 3,249,501 contigs > 1kb using MEGAHIT 151 

(v. 1.2.9) (21). The contigs within each co-assembly were classified as phages by VIBRANT (v. 152 

1.2.1) (22). In total, there were 81,422 predicted phages across all co-assemblies. These contigs 153 

were then filtered for completeness using CheckV (v. 1.0.3) (23), keeping only the 6,741 contigs 154 

that were over 50% complete. A 50% completeness cutoff was used to balance the trade-offs of 155 

overestimating viral richness due to fragmentation during assembly and maintaining viral richness. 156 

These remaining contigs were then dereplicated using blastn, keeping contigs with an average 157 

nucleotide identity of 95% over 80% alignment fraction relative to the shorter sequence (24). 158 

Similar to the analyses of the Shkoporov et al. dataset, iPHoP (v. 1.3.3) (10) was used to predict 159 

the bacterial host of each phage contig, keeping the most confident host prediction if there were 160 

multiple predictions. Quality-controlled reads were mapped to the phage contigs library using 161 

Bowtie2 (19). Contigs were considered present in a given sample using mapping thresholds 162 

defined by Stockdale et al. (6), where a contig was present if Bowtie2 mapped reads covered 50% 163 

of contigs <5 kb, 30% of contigs ≥5 kb and <20 kb, or 10% of contigs ≥20 kb. After calculating 164 

Good’s coverage and generating rarefaction curves for each sample, 502 samples were removed 165 
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 9 

which had below 1,500 length-normalized read counts (25). PCoAs and Bray-Curtis distances on 166 

the remaining 1,093 samples were generated using MicroViz (v. 0.12.1) (26), which uses Vegan 167 

as a wrapper.  DESeq2 (v. 1.44) (27) was used to calculate differentially abundant PHFs based on 168 

dysbiosis status, using the simple formula: design = ~ Participant.ID + dysbiosis_binary. PHFs 169 

with an adjusted  p value ≤ 0.05 and with a log2 fold-change ≥ 1 or with a log2 fold-change ≤ -1 170 

were considered differentially abundant. For differential abundance analyses, only individuals 171 

which had both a dysbiotic and non-dysbiotic sample were included so that a paired analysis could 172 

be conducted. Only the 18 PHFs that were more than 50% prevalent across individuals were 173 

considered for analysed PHFs. This arbitrary threshold was used to consider only the features that 174 

were widely distributed and abundant across samples. Auxiliary metabolic genes (AMGs) were 175 

predicted from viral contigs using VIBRANT. Using KEGG annotations, VIBRANT categorizes 176 

these AMGs into metabolic categories (22). In some cases, a single AMG belonged to multiple 177 

metabolic categories.  178 

 179 

Code and data availability 180 

Code used for data analysis is available at: https://github.com/mshamash/PHF_manuscript. Whole 181 

genome and Hi-C sequencing reads are available on the NCBI SRA using accession number 182 

PRJNA1145458. 183 

  184 
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 10 

Results 185 

Computational prediction of phage hosts is concordant with proximity ligation sequencing 186 

assignments to the family level 187 

We conducted proximity ligation (Hi-C) sequencing on 10 fecal samples from human 188 

microbiota-associated mice, and 2 fecal samples from healthy human donors. After Hi-C host 189 

assignment, we identified 1,577 phage-host pairings consisting of 1,547 phages targeting 77 190 

unique hosts at the genus level, with some phages being linked to more than one host. Using iPHoP, 191 

we then predicted hosts for the 1,547 phages with Hi-C-assigned hosts, yielding 1,587 phage-host 192 

pairings, comprising 1,243 phages targeting 108 unique hosts at the genus level. These 1,243 193 

phages, which had hosts assigned by both Hi-C and iPHoP, were used for subsequent comparisons 194 

between approaches. 195 

Concordance between the two approaches was calculated at each taxonomic rank from 196 

phylum to genus using three distinct approaches to account for some phages having multiple 197 

assigned/predicted hosts: (1) pairing is concordant if the most confident iPHoP prediction matches 198 

the top Hi-C hit (most stringent); (2) pairing is concordant if the most confident iPHoP prediction 199 

matches any of the Hi-C hits; and (3) pairing is concordant if any of the iPHoP predictions match 200 

any of the Hi-C hits (least stringent). Regardless of the comparison approach, there was 201 

consistently over 98% concordance at the phylum level, over 97% concordance at the class level, 202 

over 96% concordance at the order level, and over 92% concordance at the family level (Figure 203 

1). Genus-level concordance was lower, with approximately 67% concordance using comparison 204 

metrics (1) and (2), and 73% concordance using metric (3) (Figure 1). 205 

Based on these findings, we decided to use iPHoP predictions at the family-level for our 206 

subsequent analyses as this was the lowest taxonomic rank which still had high concordance 207 
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 11 

between the tool’s predictions and Hi-C experimental assignments. These family-level host 208 

predictions will now be referred to as PHF. 209 

 210 

Using predicted hosts as a functional measure of virome diversity reduces interindividual 211 

variation and increases intraindividual stability 212 

We next wanted to use PHFs to evaluate functional virome diversity within and across 213 

individuals. Using a previously published dataset consisting of 140 total samples from 10 healthy 214 

individuals (1), we predicted hosts for the provided assembled phage contigs (n=57,721 contigs). 215 

In total, iPHoP yielded 197,994 host predictions for 49,852 (86.3%) of the viral contigs (an average 216 

of 3.97 bacterial hosts predicted per viral contig). The remaining 7,869 (13.7%) contigs had no 217 

host predicted. The most confident iPHoP prediction for each contig was retained and used in 218 

downstream analysis. Overall, there was large variation in the proportion of the virome made up 219 

of contigs with known hosts (Figure 2A). To ensure that the subsequent comparisons between 220 

samples are fair (i.e., by comparing samples with similar proportions of the community represented 221 

by contigs having assigned hosts), we filtered the dataset to retain only samples which had less 222 

than 30% of the community consisting of contigs with unknown hosts, resulting in a new dataset 223 

composed of 63 samples from 10 individuals. Keeping all samples, including those with a high 224 

proportion of contigs with unknown hosts, would introduce bias into our analyses by over-225 

representing incomplete or ambiguous community structures, potentially leading to inaccurate 226 

conclusions about the relationships between samples. Using CheckV to filter for contigs >50% 227 

complete did not significantly change the proportion of the community consisting of contigs with 228 

unknown hosts (data not shown). 229 
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Phages with the same family-level host predictions were agglomerated into PHF groups 230 

and the resulting abundance matrix was used for subsequent analyses. Pairwise distances were 231 

calculated between all samples using traditional contig-level Bray-Curtis, PHF-level Bray-Curtis, 232 

and PHF-level weighted UniFrac metrics, as described in Methods. Intraindividual sample 233 

distances were consistently lower than interindividual sample distances (Figure 2B). Regardless 234 

of inter- or intraindividual sample comparison, PHF-level weighted UniFrac distances were 235 

significantly lower than PHF-level Bray-Curtis distances, which were themselves significantly 236 

lower than contig-level Bray-Curtis distances (Figure 2B). Finally, we evaluated the effects of 237 

using PHF-level distances on longitudinal intraindividual virome stability, calculated as the 238 

pairwise distance between all pairs of consecutive samples from each individual. Virome stability 239 

was consistently higher when incorporating PHF-level distances using the Bray-Curtis metric 240 

(Figure 2C). 241 

 242 

PHFs are prevalent and can provide biological insight into the IBD virome 243 

We next wanted to characterize PHFs in a larger dataset and determine whether 244 

agglomerating at the PHF-level could improve detection of disease-specific signatures. To do so, 245 

we re-analyzed the human microbiome project 2 (HMP2) dataset containing longitudinal bulk 246 

metagenome samples from IBD and non-IBD controls. After removing samples which contained 247 

low read counts (see methods), 1,093 samples from 57 CD, 31 UC, 27 non-IBD controls remained 248 

for further analyses (68.5% of total samples) (13). From these samples, we co-assembled contigs, 249 

dereplicated these contigs, predicted phages using VIBRANT, and filtered for phage completeness 250 

> 50% using CheckV. Using this approach, we obtained a total of 3,862 distinct virus operational 251 

taxonomic units (vOTUs) across the samples within the dataset. Of these 3,862 vOTUs, 87.1% 252 
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(3,365/3,862) had an iPHoP predicted host. In total, these vOTUs belonged to 75 distinct PHFs. 253 

Interestingly, the amount of vOTUs comprising each PHF varied greatly, with some PHFs 254 

comprised of hundreds of distinct vOTUs, whereas some rare PHFs were only comprised of a 255 

single vOTU (Supplementary Figure 1). 256 

 To further characterize PHFs, and to link their host associations with metabolic 257 

functionality, we searched for viral-encoded AMGs. These genes, which are expressed throughout 258 

the process of viral infection, are thought to provide phages with increased fitness via modulation 259 

of host metabolism (22, 28). In total, 45/75 PHFs carried at least one AMG and 12/75 PHFs carried 260 

at least 10 AMGs. In general, PHFs were enriched in amino acid metabolism, energy metabolism, 261 

and cofactor and vitamin metabolism genes (Supplementary Figure 2A), in line with previous 262 

surveys of AMGs in human microbiomes (22). Notably, compared to other PHFs, 263 

Bifidobacteriaceae-infecting phages were enriched in carbohydrate metabolism genes 264 

(Supplementary Figure 2B). Enterobacteriaceae-infecting phages on the other hand were 265 

enriched in protein folding, sorting, and degradation genes (Supplementary Figure 2C), and in 266 

particular cysO, which encodes a sulfur-carrier protein important in cysteine biosynthesis and 267 

resistance to oxidative stress (29). Fourteen distinct Enterobacteriaceae-infecting phage vOTUs 268 

carried cysO (Supplementary Figure 2D). Only 3/75 other PHFs (Pasteurellaceae, 269 

Pseudomonadaceae, Burkholderiaceae) carried cysO on 7 distinct contigs (Supplementary 270 

Figure 2D). Interestingly, all of these PHFs infect bacteria from the phylum Proteobacteria, 271 

potentially reflecting host-specific adaptation through the carriage of this AMG.  272 

Consistent with the high levels of interindividuality at the vOTU level observed in the 273 

Shkoporov et al. dataset, we found that only 236/3,862 (6.11%) vOTUs were found in more than 274 

50% of individuals in the HMP2 dataset (Figure 3A). In contrast, a higher proportion of PHFs 275 
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(18/75; 24%) were found in more than 50% of individuals (Figure 3B). Importantly, these 276 

prevalent features made up a significantly higher mean relative abundance in samples at the PHF 277 

level compared to the vOTU level (Figure 3C). Thus, prevalent PHFs represent a larger fraction 278 

of the total community in comparison to prevalent vOTUs. In line with these observations, 279 

intraindividual and interindividual Bray-Curtis distance between samples was significantly lower 280 

at the PHF level in comparison to the vOTU level (Figure 3D).  281 

Given that PHFs reduced ecological distance between samples, we hypothesized that this 282 

would also allow for more biologically relevant comparisons between individuals, and ultimately 283 

a greater ability to detect disease-specific signatures in the human virome. We first generated 284 

PCoA plots using Bray-Curtis distance and found that the first two principal components explained 285 

more cumulative variance when agglomerating the virome at the PHF level in comparison to the 286 

vOTU level (Figure 4A; 39.3% vs. 11%). Importantly, the proportion of variance explained by 287 

diagnosis (non-IBD, CD, UC) was higher using PHFs than using vOTUs (Supplementary Figure 288 

3; R2 = 0.0261 vs. R2 = 0.0185). Lloyd Price et al. defined dysbiotic samples within this HMP2 289 

dataset as those with high microbiota divergence from non-IBD controls (13). Using this 290 

designation, we also found that dysbiosis status explained a higher proportion of variance using 291 

PHFs when compared to vOTUs (Figure 4A; R2 = 0.0394 vs. R2 = 0.0157). We also performed 292 

differential abundance analyses to determine whether certain PHFs were enriched or depleted 293 

depending on dysbiosis status. Including only prevalent PHFs (found in > 50% of individuals), we 294 

identified a single PHF enriched in dysbiotic samples (Enterobacteriaceae) and 4 significantly 295 

depleted PHFs (CAG-74, Ruminococcaceae, Acidaminococcaceae, Acutalibacteraceae) (Figure 296 

4B). These observations suggest that predicted phage hosts can be used to identify certain IBD-297 

specific virome signatures.  298 
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Discussion 299 

  In the past decade, the development of phage-specific bioinformatic tools, alongside large 300 

cohort viral metagenomic studies, has revealed key characteristics of the human gut virome. 301 

Notably, gut viromes exhibit high levels of interindividuality (1, 6) and temporal variation (6). 302 

While we can now appreciate the sheer genomic phage diversity that our collective guts harbor, it 303 

remains a challenge to understand how similar our viromes are over time and from one another. 304 

Here, we demonstrate that the use of predicted phage host families (PHFs) can improve virome 305 

comparisons between and within individuals, resulting in valuable functional information typically 306 

lost with current approaches. 307 

Using PHFs as a unit of taxonomy in two independent published datasets, we showed that 308 

in comparison to vOTUs, intra- and inter-personal ecological distance is reduced, indicating that 309 

despite phages differing between samples at the contig/vOTU level, their functionality remains 310 

similar. These findings are reminiscent of the functional redundancy characteristic of gut bacterial 311 

communities, whereby phylogenetic differences between individuals exist despite conserved 312 

functional profiles (30, 31). The conserved functionality of both phage and bacterial communities 313 

over time likely contribute to the stability and resilience of both subsets. 314 

The advantages of working with reduced between-sample virome distance were evident as 315 

we showed that the first two principal coordinate axes of PCoA plots explained more variance 316 

when using PHFs as the unit of taxonomy. We also showed that the proportion of variance 317 

explained by disease and dysbiosis status were greater when using PHFs. These findings are in 318 

line with those from Clooney et al. (2), who analyzed human IBD viromes. They showed that 319 

gene-sharing-based genus-level taxonomy, compared to contig-based analyses, better identified 320 

disease-associated compositional changes and increased the variance explained by the first two 321 
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principal coordinate axes. These observations together highlight the importance of using a higher 322 

taxonomic rank when making cross-individual comparisons of gut viromes. 323 

 A key additional benefit of using predicted hosts lies in the biologically relevant 324 

information they provide. This contrasts with existing gene-sharing and phage morphology-based 325 

taxonomy approaches, where taxonomic groups are not necessarily informative of how phages 326 

interact with their bacterial hosts or the ecosystem at-large (32). Phages in several ecosystems, 327 

including the gut, have been shown to be strong regulators of bacterial abundance, diversity, and 328 

metabolism (11, 12, 33). Therefore, grouping phages by their predicted hosts provides context for 329 

the effects that they may have on the bacterial community and beyond. We showed that in the 330 

context of IBD, dysbiotic samples were enriched in Enterobacteriaceae PHFs, and depleted in 331 

CAG-74, Ruminococcaceae, Acidaminococcaceae and Acutalibacteraceae PHFs. Our analyses 332 

provide a framework to identify interactions relevant to disease, although follow-up studies are 333 

needed to understand the importance of these phage-host interactions. For instance, phage 334 

enrichment in tandem with host depletion could be relevant to several diseases (34–36). While the 335 

increased abundance of Enterobacteriaceae PHFs we observed in dysbiotic samples is likely a 336 

consequence of increased host abundance, it is interesting to note that these phages were enriched 337 

in cysO, a gene involved in cysteine biosynthesis. Notably, cysO has been directly tied to defence 338 

against oxidative stress (37). As Enterobacteriaceae are known to proliferate in the inflamed gut 339 

in the face of oxidative stress (38, 39), our data imply that phage-encoded AMGs could be a source 340 

of this resistance. More broadly, the observation that different PHFs carry distinct AMGs suggests 341 

that grouping at the phage host family level provides an additional layer of functional insight 342 

beyond phage-host relationships. However, an important consideration is that potential 343 
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inaccuracies in defining prophage borders (40) could lead to an overestimation of AMGs (41). 344 

Thus, while these findings merit further investigation, they should be interpreted with caution.  345 

While we do propose the use of PHFs for between-sample virome comparisons, it should 346 

be noted that this method is reliant on the sensitivity of iPHoP (or any other phage-host matching 347 

bioinformatic tool used). In our analyses, between 12.9% (Lloyd-Price et al. dataset) and 13.7% 348 

(Shkoporov et al. dataset) vOTUs did not have an iPHoP-assigned host. This may become an even 349 

larger issue if this approach is applied to non-human associated microbiomes where iPHoP 350 

performs with less sensitivity (10). Regardless, it is reasonable to assume that the sensitivity of 351 

bioinformatic phage-host prediction tools will improve alongside recent improvements in phage 352 

genome reconstruction approaches such as contig extension (42) and viral binning (43). 353 

 To assess the accuracy of bioinformatic phage-host predictions, we measured the 354 

concordance at different taxonomic ranks between iPHoP, a bioinformatic tool, and Hi-C 355 

sequencing, which relies on physical linkage between phage and host. Due to the prohibitive costs 356 

associated with Hi-C sequencing, especially when applied to large volumes of sample, we suggest 357 

using iPHoP for family-level host predictions as a suitable alternative. Still, this approach should 358 

be interpreted with caution as the concordance between iPHoP and Hi-C sequencing was only 359 

assessed using fecal samples. These trends could feasibly differ depending on the environment 360 

sampled. 361 

 Lastly, as phage-host range is often not beyond the species and strain level, by grouping 362 

phages at the host family level, this method lacks the sensitivity to detect trends in specific phage-363 

host pairs. Despite these limitations, as bioinformatics methods to detect phage-host pairs improve 364 

their resolution, similar approaches to PHFs could be used at lower taxonomic ranks. 365 

  366 
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Figure Legends 505 

 506 

Figure 1. Computationally-predicted bacterial hosts for vOTUs are concordant with in situ 507 

associations to the bacterial family level. Agreement between iPHoP predicted host range and 508 

Hi-C assigned host range at various taxonomic ranks for 1,243 vOTUs. Additional comparisons 509 

were made when iPHoP predicted multiple hosts for a vOTU (see main text for details on the three 510 

comparisons). 511 

 512 

 513 

Figure 2. PHFs reduce interindividual variation and increase intraindividual virome 514 

stability in a cohort of 10 healthy individuals. Data were analyzed from a previously published 515 

study of 10 healthy individuals (1). (A) Taxonomic bar plots of virome composition at the PHF 516 

level for each individual over time. Facet labels above the bar plots correspond to the subject IDs 517 

from the original study. (B) Ecological distances between samples with Bray-Curtis at the contig 518 

level, Bray-Curtis at the PHF level, and Weighted UniFrac at the PHF level. Interindividual and 519 

intraindividual comparisons are both shown. Significance was assessed using the Friedman test 520 

with the post-hoc Wilcoxon signed-rank test, using Bonferroni correction for multiple comparisons 521 

(p < 0.001, ***; p < 0.0001, ****). (C) Virome stability, defined here as (1 - ecological distance 522 

from previous sample), was calculated for each individual using the Bray-Curtis distance metrics 523 

at the contig level and at the PHF level. Significance was assessed using the Wilcoxon signed-rank 524 

test (p < 0.01, **; p < 0.001, ***). 525 
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Figure 3. PHFs are prevalent and reduce intra- and interindividuality in a large human IBD 527 

cohort. Data were analyzed from the previously published HMP2 dataset (13). Samples with low 528 

read counts (< 1,500) were removed from analyses. In total, bulk metagenomes from 1,093 529 

samples from 115 individuals (57 CD, 31 UC, 27 non-IBD controls) were included for downstream 530 

analyses. (A, B) Rank prevalence distributions of vOTUs (A) and PHFs (B) across individuals. In 531 

total, there were 3,886 distinct vOTUs and 75 distinct PHFs. The dotted red line indicates the rank 532 

at which features are more, or less than, 50% prevalent. (C) Mean relative abundance of features 533 

(PHFs vs. vOTUs) that were present in more than 50% of individuals in the dataset. (D) Bray-534 

Curtis distance between samples according to interindividual or intraindividual comparisons. 535 

Significance was assessed using the Wilcoxon signed-rank test (p ≤ 0.0001, ****). 536 

 537 

 538 

Figure 4. PHFs reveal disease-specific signatures of IBD. Data were analyzed from the 539 

previously published HMP2 dataset (13). Samples with low read counts (< 1,500) were removed 540 

from analyses. (A) PCoA plots generated from Bray-Curtis distances matrices using vOTUs (left) 541 

and PHFs (right). Samples are color-coded according to the dysbiotic status identified in (13). (B) 542 

Differentially abundant PHFs based on dysbiosis status. Only individuals which had both a 543 

dysbiotic and non-dysbiotic sample were included. Only PHFs that were more than 50% prevalent 544 

across individuals were considered for these analyses. PHFs with an adjusted  p value ≤ 0.05 and 545 

with a log2 fold-change ≥ 1 or with a log2 fold-change ≤ -1 were considered differentially abundant. 546 

  547 
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Supplementary Figure 1. vOTU membership of PHFs. Data were analyzed from the previously 548 

published HMP2 dataset (13). Samples with low read counts (< 1,500) were removed from 549 

analyses. The distribution of PHFs is based on the number of distinct vOTUs that comprises them. 550 

The 5 PHFs comprised of the most vOTUs are indicated on the plot. 551 

 552 

 553 

Supplementary Figure 2. AMG distribution across PHFs. Data were analyzed from the 554 

previously published HMP2 dataset (13). Only the 12 PHFs that contained > 10 AMGs are shown 555 

here. AMGs were detected using VIBRANT, which uses KEGG annotations to assign metabolic 556 

categories. (A) Distribution of the AMGs found within each PHF. We then determined the number 557 

of AMGs per Mb of assembled vOTUs for each PHF, broken down by (B) carbohydrate 558 

metabolism genes, and (C) folding, sorting and degradation genes. (D) Number of vOTUs 559 

containing cysO across PHFs.  560 

 561 

 562 

Supplementary Figure 3. Ordination of samples based on patient diagnosis. Data were 563 

analyzed from the previously published HMP2 dataset (13). Samples with low read counts (< 564 

1,500) were removed from analyses. PCoA plots were generated from Bray-Curtis distances 565 

matrices using vOTUs (left) and PHFs (right). Samples are color-coded according to the diagnosis 566 

status identified in (13). 567 

 568 
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